NO$_2$/NO/NO$_x$ Monitor

2B Technologies, Inc.

OPERATION MANUAL

Model 405 nm

© Copyright 2017, 2B Technologies, Inc.
All rights reserved.

Technical Support:
www.twobtech.com/techsupport
technicalsupport@twobtech.com
+1(303)273-0559
Contents

IDENTIFICATION RECORDS iv
PRINTING HISTORY v
WARRANTY STATEMENT AND SAFETY ISSUE vi
WARNINGS viii

1. NO$_2$/NO/NO$_X$ MONITOR INTRODUCTION 1
 1.1. Theory of Operation .. 2
 1.2. Adaptive Filter ... 4

2. SPECIFICATIONS: MODEL 405 nm NO$_2$/NO/NO$_X$ MONITOR 5

3. OPERATION 7
 3.1. Shipping Box Contents .. 7
 3.2. Pre-Operation Flow Settings of the Monitor 7
 3.3. Operation of the Monitor .. 8
 3.4. Connections and Setup .. 8
 3.5. Measurement of the Zero Offset; Auto Zero Function 9
 3.6. Data Averaging and Data Logging .. 9
 3.7. Collecting Data from the Analog Outputs 9
 3.8. Collecting Data over the Serial Port in Real Time 10
 3.9. Logging Data Using the SD Card ... 11
 3.10. Summary of Operating Recommendations 12

4. THE MENU 13
 4.1. Accessing the Main Menu .. 13
 4.2. Menu Tree .. 14
 4.3. Dat Submenu: Internal Data Logging 15
 4.3.1. To Start Logging Data ... 15
 4.3.2. To Stop Logging Data ... 16
 4.3.3. To Transmit Logged Data ... 17
 4.4. Avg Submenu: To Average Data .. 17
 4.5. Cfg Submenu: Instrument Configuration 18
 4.5.1. To Set the Time and Date .. 18
 4.5.2. Calibration Parameters - Overview 18
 4.5.3. To Set the NO$_2$ and NO Calibration Parameters 18
 4.5.4. To Set the Flow Meter Slopes ... 20
 4.5.5. To Change the Analog Output Scaling Factor 20
 4.5.6. Measurement Units for NO$_2$ and NO 20
 4.6. Mod Submenu: Measurement Modes 20
 4.6.1. NO$_2$ Mode .. 21
 4.6.2. NO$_2$ and NO Mode ... 21
 4.6.3. NO Mode .. 21
 4.7. Zer Submenu: Auto Zeroing ... 21
 4.7.1. Zero Duration ... 21
 4.7.2. Zero Frequency .. 21
5. REMOTE CONTROL VIA SERIAL CONNECTION ... 22
 5.1. Serial Menu .. 22
 5.2. Status Codes ... 23

6. MAINTENANCE ... 24

7. CALIBRATION ... 25
 7.1. Introduction .. 25
 7.2. Equipment Required ... 25
 7.3. Setup Check .. 26
 7.4. Calibration Procedure .. 26
 7.4.1. Instrument Preparation ... 26
 7.4.2. Measurement of Zero Air ... 26
 7.4.3. Measurement of NO2 and NO Standards 27
 7.4.4. Calibration Curve ... 27

8. PERIODIC ZERO AND SPAN CHECKS ... 28

9. TROUBLESHOOTING .. 29

10. LABELED INSTRUMENT PHOTOS ... 32

11. WIRING CONNECTIONS ... 38

12. SPARE PARTS ... 39

13. SERVICE LOG ... 40

Appendix A: Using the 2B Technologies Display and Graphing Software 42
IDENTIFICATION RECORDS

Record the following information for future reference:

Unit serial number: ________________________________

Warranty start date: ________________________________
 (date of receipt)
This manual covers the Model 405 nm NO₂/NO/NOₓ Monitor™ used for measurement of atmospheric nitrogen dioxide (NO₂), nitric oxide (NO) and NOₓ (NO + NO₂) over a dynamic range extending from a few parts per billion by volume (referred to herein as simply ppb) up to 10 parts-per-million by volume (ppm) for NO₂ and 2 ppm for NO. The Model 405 nm is approved as a Federal Equivalent Method (FEM) for NO₂ over the range of 0-500 ppb NO₂ for the operating temperature range of 20-30°C. New editions of this manual are complete revisions that reflect updates to the instrument itself, as well as clarifications, additions and other modifications of the text. Among the changes for Revision F-1 is the inclusion of an SD data logger as a standard feature. Revision F-2 included updates to the power and flow specifications, and clarifications to the text regarding the Auto Zero function and interferences.

Revision A ...December 2013
Revision B ...February 2014
Revision C ...May 2015
Revision D ...June 2016
Revision E, serial number 1021-1044.................................February 2017
Revision F-1, serial number 1045 and aboveAugust 2017
Revision F-2, serial number 1045 and aboveNovember 2017

TRADEMARKS & PATENTS

2B Technologies™, 2B Tech™, 2B™, NO₂/NO/NOₓ Monitor™ and Model 405 nm™ are trademarks of 2B Technologies, Inc.

CONFIDENTIALITY

The information contained in this manual may be confidential and proprietary, and is the property of 2B Technologies, Inc. Information disclosed herein shall not be used to manufacture, construct, or otherwise reproduce the goods disclosed herein. The information disclosed herein shall not be disclosed to others or made public in any manner without the expressed written consent of 2B Technologies, Inc.
WARRANTY STATEMENT AND SAFETY ISSUE

2B Technologies, Inc. warrants its products against defects in materials and workmanship. 2B Technologies will, at its option, repair or replace products that prove to be defective. The warranty set forth is exclusive and no other warranty, whether written or oral, is expressed or implied. 2B Technologies specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

Warranty Period

The warranty period is one (1) year from date of receipt by the purchaser, but in no event more than thirteen (13) months from original invoice date from 2B Technologies, Inc.

Warranty Service

Warranty Service is provided to customers via web ticket, email and phone support, Monday - Friday, from 9:00 a.m. to 5:00 p.m., Mountain Time USA. The preferred method of contacting us is through our web ticketing software at:

www.twobtech.com/techsupport

This way all technical staff at 2B Tech will be alerted of your problem and be able to respond. When you receive an email reply, please click on the Ticket link provided to continue to communicate with us directly over the internet. The web ticket approach to customer service allows us to better track your problem and be certain that you get a timely response. We at 2B Tech pride ourselves on the excellent customer service we provide.

You may also contact us by email at techsupport@twobtech.com or by phone at +1(303)273-0559. In either case, a web ticket will be created, and future communications with you will be through that ticket.

Initial support involves trouble-shooting and determination of parts to be shipped from 2B Technologies to the customer in order to return the product to operation within stated specifications. If such support is not efficient and effective, the product may be returned to 2B Technologies for repair or replacement. Prior to returning the product, a Repair Authorization Number (RA) must be obtained from the 2B Technologies Service Department. We will provide you with a simple Repair Authorization Form to fill out to return with the instrument.

Shipping

2B Technologies will pay freight charges for replacement or repaired products shipped to the customer site. Customers shall pay freight charges for all products returning to 2B Technologies.
Conditions

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance, adjustment, calibration or operation by the customer. Maintenance, adjustment, calibration or operation must be performed in accordance with instructions stated in this manual. Use of maintenance materials purchased from suppliers other than 2B Technologies will void this warranty.

Limitation of Remedies and Liability

The remedies provided herein are the customer's sole and exclusive remedies. In no event shall 2B Technologies be liable for direct, indirect, special, incidental or consequential damages (including loss of profits) whether based on contract, tort or any other legal theory. This manual is believed to be accurate at the time of publication and no responsibility is taken for any errors that may be present. In no event shall 2B Technologies be liable for incidental or consequential damages in connection with or arising from the use of this manual and its accompanying related materials. Warranty is valid only for the country designated on the 2B Technologies quote or invoice.

Safety Warning

The Model 405 nm NO₂/NO/NOₓ Monitor is designed to use an internal generator of ozone (O₃) to oxidize NO to NO₂. Ozone is a toxic gas and should be handled with caution. Under normal operating conditions, the instrument will produce ~6 ppm O₃ in air. The instrument is equipped with an internal ozone scrubber to remove ozone before venting the sample. Although the scrubber is catalytic, it does have a limited lifetime and should be replaced at least every 12 months. For this reason, it is recommended to properly vent the output of the instrument to protect against any unscrubbed O₃. The outlet should not be vented near the inlet of any NOₓ or ozone monitor inlets to avoid false measurements.

The NIOSH exposure limit for ozone is 0.1 ppm or 100 ppb (8-hour time-weighted average).
WARNINGS

ENGLISH

WARNING:
Any operation requiring access to the inside of the equipment, could result in injury. To avoid potentially dangerous shock, disconnect from power supply before opening the equipment.

WARNING:
This symbol, on the instrument indicates that the user should refer to the manual for operating instructions.

WARNING:
If this instrument is used in a manner not specified by 2B Technologies, Inc., USA, the protection provided by the instrument may be impaired.

ESPAÑOL

ATENCION:
Cualquier operación que requiera acceso al interior del equipo, puede causar una lesión. Para evitar peligros potenciales, desconectarlo de la alimentación a red antes de abrir el equipo.

ATENCION:
Este símbolo, en el instrumento indica que el usuario debería referirse al manual para instrucciones de funcionamiento.

ATENCION:
Si este instrumento se usa de una forma no especificada por 2B Technologies, Inc., USA, puede desactivarse la protección suministrada por el instrumento.

FRANÇAIS

ATTENTION:
Chaque opération à l'intérieur de l'appareil, peut causer du préjudice. Afin d'éviter un shock qui pourrait être dangereux, disconnectez l’appareil du réseau avant de l’ouvrir.

ATTENTION:
Le symbole, indique que l’utilisateur doit consulter le manuel d’instructions.

ATTENTION:
Si l’instrument n’est pas utilisé suivant les instructions de 2B Technologies, Inc., USA, les dispositions de sécurité de l’appareil ne sont plus valables.

DEUTSCH

WARNHINWEIS:
Vor dem Öffnen des Gerätes Netzstecker ziehen!

WARNHINWEIS:
Dieses, auf dem Gerät weist darauf hin, dab der Anwender zuerst das entsprechende Kapitel in der Bedienungsanleitung lesen sollte.

WARNHINWEIS:
Wenn das Gerät nicht wie durch die Finna 2B Technologies, Inc., USA, vorgeschrieben und im Handbuch beschrieben betrieben wird, können die im Gerät eingebauten Schutzvorrichtungen beeinträchtigt werden.

ITALIANO

ATTENZIONE:
Qualsiasi intervento debba essere effettuato sullo strumento può essere potenzialmente pericoloso a causa della corrente elettrica. Il cavo di alimentazione deve essere staccato dallo strumento prima della sua apertura.

ATTENZIONE:
Il simbolo, sullo strumento avverte l’utilizzatore di consultare il Manuale di Istruzioni alla sezione specifica.

ATTENZIONE:
Se questo strumento viene utilizzato in maniera non conforme alle specifiche di 2B Technologies, Inc., USA, le protezioni di cui esso è dotato potrebbero essere alterate.

DUTCH

OPGELET:
Iedere handeling binnenin het toestel kan beschadiging veroorzaken. Om iedere mogelij lij gevarenlijke shock te vermijden moet de aansluiting met het net verborgen worden, vóór het openen van het toestel.

OPGELET:
Het symbool, geeft aan dat de gebruiker de instructies in de handleiding moet raadplegen.

OPGELET:
Indien het toestel niet gebruikt wordt volgens de richtlijnen van 2B Technologies, Inc., USA gelden de veiligheidsvoorzieningen niet meer.

CHINESE

警告：
任何需要接触设备内部的操作都可能造成伤害。为避免潜在的电击危险，请在打开设备前断开电源。

警告：
这个符号在设备上表示用户应参考说明书上的操作指南。

警告：
如果该设备未按照2B Technologies, Inc., USA的指定操作（仪器内部性能受损）
1. **NO$_2$/NO/NO$_x$ MONITOR INTRODUCTION**

The 2B Technologies Model 405 nm NO$_2$/NO/NO$_x$ Monitor™ is designed to enable accurate measurements of atmospheric nitrogen dioxide (NO$_2$), nitric oxide (NO) and NO$_x$ (NO + NO$_2$) over a dynamic range extending from a few parts per billion by volume (referred to herein as simply ppb) up to 10 parts-per-million by volume (ppm) for NO$_2$ and 2 ppm for NO based on the absorption of visible light at 405 nanometers (nm). The Model 405 nm is approved as a Federal Equivalent Method (FEM) for NO$_2$ over the range of 0-500 ppb NO$_2$ for the operating temperature range of 20-30°C (EQNA-0217-243).

The Model 405 nm provides an absolute method for measuring NO$_2$ based on the Beer-Lambert Law and thus requires only infrequent calibration. The NO$_2$ measurement is analogous to the measurement of O$_3$ using a conventional absorbance-based ozone monitor; the two main differences are the use of 405 nm light for NO$_2$ in place of 254 nm light for O$_3$, and a much longer path length of ~2 meters (vs. 15-30 cm for ozone) to compensate for the much lower absorption cross section of NO$_2$. The long path length is achieved by use of a cell with a tubular design that provides low volume and rapid gas exchange.

Nitric oxide is measured by measuring the light intensities with and without ozone added to oxidize NO to NO$_2$. As described in more detail below, the result is a “semi-direct” measurement of NO in that the NO concentration is output directly and not based on subtraction of NO$_2$ concentration from a total NO$_x$ concentration. Instead, the NO$_x$ concentration is computed as the sum of the measurements of NO$_2$ and NO.

The NO$_2$/NO/NO$_x$ Monitor is provided with a NIST-traceable calibration. Because detection is based on the absolute method of absorbance, frequent calibration of the span (sensitivity) is not required.
1.1. Theory of Operation

Figure 1.1 is a simplified schematic diagram of the Model 405 nm NO2/NO/NOx Monitor.

Sample air is continuously drawn through the instrument by the Pump at a flow rate of ~1.5 L/min. The NO2 Scrubber Valve alternately bypasses and sends the sample air through a heated NO2 scrubber to remove all NO2 in the sample. The NO2-scrubbed or unscrubbed air passes through the Reactor Volume and the DewLine™ Nafion Tubes (to equilibrate humidity), through the Optical Cell and through the Cell Flow Meter. Alternate switching of the NO2 Scrubber Valve once every 5 seconds allows the measurement of a light intensity in the absence \((I_o)\) of NO2 and presence \((I)\) of NO2. The Beer-Lambert Law is then used to calculate the concentration of NO2 from \(I\) and \(I_o\):

\[
[NO_2] = \frac{1}{L\sigma} \ln\left(\frac{I_o}{I}\right)
\]

Here, \(L\) is the path length (~2.1 m) and \(\sigma\) is the absorption cross section (~6.06 \times 10^{-19} \text{ cm}^2 \text{ molec}^{-1}) for NO2 averaged over the light-emitting diode (LED) emission centered on 405 nm. The measurement provides an absolute NO2 concentration in molecules/cm\(^3\). In order to convert this concentration to a mixing ratio (fraction of total air molecules that are NO2), we also measure the cell temperature and pressure, which determines the total concentration of air molecules. From the temperature and pressure we use the ideal gas law to calculate the concentration of air molecules, \(M\), in the optical cell. Nitrogen dioxide in units of ppb is then given by:
\[[NO_2]_{ppb} = 10^9 \frac{[NO_2]}{[Air]} = 10^9 \frac{RT}{N_A P L \sigma} \ln \left(\frac{I_o}{I} \right) \]

where \(N_A \) is Avogadro's number \((6.02214129 \times 10^{23} \text{ molec/mol})\), \(R \) is the gas constant \((82.05746 \text{ cm}^3 \text{ atm K}^{-1} \text{ mol}^{-1})\), \(T \) is the absolute temperature in K, and \(P \) is the cell pressure in atmospheres.

Nitric oxide is measured by bypassing the NO\(_2\) Scrubber and measuring the light intensity while adding \((I)\) or not adding \((I_o)\) ozone to convert NO to NO\(_2\) according to the well-known reaction:

\[
\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \tag{1}
\]

As in all our instruments, a DewLineTM Nafion® tube is used to equilibrate humidity during \(I\) and \(I_o\) measurements, so that any water vapor interference due to refractive effects on light transmission through the optical cell is eliminated. At the conditions of the instrument, reactions of the added ozone with species other than NO are insignificant.

\(\text{NO}_x\) is obtained by adding the measurements of NO\(_2\) and NO. The instrument may be operated in continuous NO\(_2\) or NO modes, or in a mode where NO\(_2\) and NO are alternately measured, once every 5 seconds.

As discussed above, the pressure and temperature within the absorption cell is measured so that the NO\(_2\) concentration can be expressed as a mixing ratio in parts-per-billion by volume (ppb). The instrument displays and records the cell temperature and pressure in addition to the NO\(_2\) mixing ratio. The cell pressure is displayed and logged in units of either mbar, and the cell temperature in units of °C.

In principle, the measurement of NO\(_2\) by absorbance at 405 nm requires no external calibration; it is an absolute method. However, factors such as variability in the LED peak emission wavelength and band width, and non-linearity of the photodiode and amplifier response, can result in a small measurement error. Therefore, each instrument is calibrated against NIST-traceable standards of NO and NO\(_2\). These results are used to calibrate the Model 405 nm with respect to an offset and slope (gain or sensitivity). The corrections for offset and slope are recorded in the instrument Birth Certificate and on a calibration sticker that can be viewed by removing the top cover of the instrument. These calibration parameters are entered into the microprocessor memory prior to shipment. The user may change the slope and offset calibration parameters from the front panel by entering the Menu if desired. It is recommended that the instrument be recalibrated at least once annually and preferably more frequently. The offset may drift on time scales of hours to days due to temperature change or chemical contamination of the absorption cell. As described below, an Auto Zero function is available to periodically adjust the baseline measurement to zero using an internal zero scrubber.
1.2. Adaptive Filter

The Model 405 nm firmware processes sample concentration data through a built-in adaptive filter. During operation, the firmware may automatically switch between two different filter lengths based on the conditions at hand. During the measurement of stable concentrations, the firmware, by default, computes an average of the last 36 raw measurements, or 3 minutes of measurements. This provides smooth and stable readings by averaging out a considerable amount of random noise to improve the precision. If the filter detects rapid changes in concentration, the filter reduces the averaging to only 4 samples or 20 seconds to allow the analyzer to respond more quickly. Two conditions must be simultaneously met to switch to the short filter. First, the instantaneous concentration must differ from the average in the long filter by at least 40 ppb. Second, the instantaneous concentration must differ from the average in the long filter by at least 10% of the average in the long filter. The lengths of the long and short filter can be changed as well as the minimum difference and percent difference. This can be done via the serial connection as outlined in the Serial Menu section in this manual (Section 5).

To disable the adaptive filter, set the short filter length to 1, the difference to 0, and the percent to 0.
2. SPECIFICATIONS: MODEL 405 nm NO₂/NO/NOₓ MONITOR

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle of Measurement</td>
<td>Direct absorbance of NO₂ at 405 nm</td>
</tr>
<tr>
<td>Federal Equivalent Method (FEM)</td>
<td>Yes, for NO₂ (0-500 ppb, 20-30°C), EQNA-0217-243</td>
</tr>
<tr>
<td>Measurement Modes</td>
<td>NO₂ only; NO only; NO, NO₂ and NOₓ</td>
</tr>
<tr>
<td>Linear Dynamic Range</td>
<td>0-10 ppm for NO₂; 0-2 ppm for NO (FEM approved for 0-500 ppb NO₂ for 20-30°C)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1 ppb</td>
</tr>
<tr>
<td>Precision (1σ rms noise)</td>
<td>< 0.5 ppb or 0.5% of reading (with adaptive filter¹)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Greater of 2 ppb or 2% of reading</td>
</tr>
<tr>
<td>Limit of Detection (2σ)</td>
<td>< 1 ppb (with adaptive filter¹)</td>
</tr>
<tr>
<td>Flow Rate (nominal)</td>
<td>1.5 Liter/min</td>
</tr>
<tr>
<td>Flow Rate Requirement</td>
<td>Minimum: 1.4 Liter/min; Maximum: 1.6 Liter/min</td>
</tr>
<tr>
<td>Response Time, 100% of Step Change</td>
<td>10 s for 5-s averaging</td>
</tr>
<tr>
<td></td>
<td>20 s with adaptive filter¹</td>
</tr>
<tr>
<td>Measurement Frequency</td>
<td>0.2 Hz (once every 5 s)</td>
</tr>
<tr>
<td>Averaging Times</td>
<td>5 s, 1 min, 5 min, 1 hr</td>
</tr>
<tr>
<td>Internal Data Logger Capacity</td>
<td>8,192 lines (5 s avg. = 1.4 days; 1 min avg = 5.7 days; 5 min avg = 1.0 mo; 1 hr avg = 0.94 yr); increased capacity with optional micro-SD Drive</td>
</tr>
<tr>
<td>SD Card Logger Capacity</td>
<td>Minimum 2 GB (> 5-year capacity for 10-s measurement mode)</td>
</tr>
<tr>
<td>Concentration Units</td>
<td>ppb, pphm, ppm</td>
</tr>
<tr>
<td>Pressure Units</td>
<td>mbar</td>
</tr>
<tr>
<td>Temperature Units</td>
<td>°C</td>
</tr>
<tr>
<td>T and P Corrected</td>
<td>Yes</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>10 to 50°C (FEM approved for 20-30°C for NO₂)</td>
</tr>
<tr>
<td>Operating Altitude</td>
<td>~0-30 km (~30-1000 mbar)</td>
</tr>
<tr>
<td>Power Requirement; 5-amp 110/220 VAC Power Pack (provided) or Battery</td>
<td>11-14 V dc or 120/240 V ac, 1.4 A at 12 V, 17 watt Max: 2.9 A at 12 V, 35 watt (warmup)</td>
</tr>
<tr>
<td>Size</td>
<td>Rackmount: 17" w x 14.5" d x 5.5" h (43 x 37 x 14 cm)</td>
</tr>
<tr>
<td>Specification</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Weight</td>
<td>18.6 lb (8.4 kg)</td>
</tr>
<tr>
<td>Data Outputs</td>
<td>RS232, 0-2.5 V Analog Outputs for NO and for NO₂</td>
</tr>
<tr>
<td>Data Transfer Baud Rate</td>
<td>2400</td>
</tr>
<tr>
<td>Output Ranges</td>
<td>User-defined scaling factor in menu</td>
</tr>
<tr>
<td>DewLine™</td>
<td>Yes</td>
</tr>
<tr>
<td>Long Life Pump</td>
<td>Yes, 15,000 hr</td>
</tr>
<tr>
<td>Flow Meter</td>
<td>Yes</td>
</tr>
<tr>
<td>Options</td>
<td>Bluetooth for wireless data transmission; USB output (in place of RS232)</td>
</tr>
</tbody>
</table>

1An adaptive filter may be selected from the serial menu, making signal averaging similar to competing NOₓ monitors. Specifications above are for default parameters: Change Difference = 40 ppb, Change Percent = 10%, Short Filter = 4 pts (20 s), Long Filter = 36 pts (3 min). Adaptive filter parameters may be adjusted by the user. See Section 5 of this manual.
3. OPERATION

Please read all the following information before attempting to install the Model 405 nm NO\textsubscript{2}/NO/NO\textsubscript{x} Monitor. For assistance, please call 2B Technologies at (303)273-0559.

NOTE:
Save the shipping carton and packing materials that came with the Monitor. If the NO\textsubscript{2}/NO/NO\textsubscript{x} Monitor must be returned to the factory, pack it in the original carton. Any repairs as a result of damage incurred during shipping will be charged.

3.1. Shipping Box Contents

Open the shipping box and verify that it contains all of the items on the shipping list. If anything is missing or obviously damaged, contact 2B Technologies immediately.

3.2. Pre-Operation Flow Settings of the Monitor

The Model 405 nm has two independent flows, which need to be verified (via the instrument’s LCD menu or serial menu) and adjusted before operating the instrument. The two volumetric flow rates that are independently adjusted are:

Cell Flow Rate (1400-1600 cm3/min): The cell flow rate of sample gas and ozone/air through the reactor volume and optical cell.

Ozone Flow Rate (60-80 cm3/min): The flow rate of ozone/air mixed into the sample flow stream.

These flow rates are adjusted to be in the ranges specified above at the factory. However, due to changes in altitude and thus pressure, the two flow rates need to be verified and adjusted by the user to be within the specified ranges if necessary. To do this, follow the flow rates on the LCD screen (Section 3.3) or serial output (see Section 3.8). The Cell Flow, displayed as \textbf{CF}, should be in the range 1400-1600 cm3/min. This flow can be adjusted by the needle valve located on the back panel labeled “Cell Flow.” The Ozone Flow, displayed as \textbf{O3F}, should be in the range 60-80 cm3/min. The Ozone Flow can be adjusted by the needle valve located on the back panel labeled “O3 Flow.” Once these flows have been verified and adjusted they should not need to be re-adjusted unless the instrument’s location changes in altitude.

After adjusting the flow, the instrument power should be cycled on and off before proceeding.
3.3. Operation of the Monitor

To operate the NO₂/NO/NOₓ Monitor, connect it to an external power source and power the instrument on using the front panel power switch. The instrument requires a 12 V DC source, which can be supplied by the provided 110-220 V AC power adapter or an external battery. The power source should be capable of supplying at least 2.9 amperes of current at 12 V (35 watts). The source can be in the range 11-14 V DC without any detrimental effects on the measurement. Note that the instrument cannot be powered via USB connection to a computer because the minimum power requirements cannot be achieved via this method. (Connection to the computer may only be used for data transmission; see Section 3.8.)

Once turned on, the instrument will display an introductory screen with the version number of the firmware installed on the microprocessor and a display of the time and date. After a few seconds, the instrument briefly will display a status screen showing the state of logging (either the logged number, “OFF,” or “FULL”) and then begin displaying measurements of the species selected for measurement (NO₂; NO; or NO₂ and NO) along with values of the cell flow rate (CF), ozone flow rate (O3F), and the temperature (T) and pressure (P) of the absorption cell. Alternating screens will show the Log state (logged number, OFF, or FULL) and the time and date. The first dozen readings (requiring about two minutes) may be spurious, with large positive and negative swings, due to the warmup of the light-emitting diode (LED) and electronics. Also, measurements may be inaccurate during the first 10-20 minutes required for the LED, photodiode, and internal temperature of the absorption cell to stabilize.

3.4. Connections and Setup

1. Attach the sample inlet line to the SAMPLE inlet port (see Section 10, Figure 10.6). The pressure of the sample gas at the inlet port should be at ambient pressure and constant. The inlet tubing should be made of PTFE (Teflon®), PFA or some other inert material that does not destroy NO₂ or NO and that does not desorb plasticizers and other organics that can contaminate the flow path. The length of tubing should be kept as short as possible to minimize loss of NOₓ species to the internal surface and to minimize reaction of NO with ambient ozone. Tygon®, polypropylene (which may look like Teflon®) and metal tubing should not be used. Teflon®-lined Tygon® tubing, which is used inside the instrument, provides the flexibility of Tygon with the inertness of Teflon® and is recommended. A provided Teflon® inlet filter is required to prevent internal contamination of the tubing and optical cell by particulate matter. We recommend a 47 mm PTFE (polytetrafluoroethylene) membrane filter with 5-micron pore size. Also, particles can provide a positive interference to the measurement by absorbing and scattering light from the LED source. The filter should be tested for NO₂ and NO loss by measuring ambient NO₂ and NO with and without the filter attached. Replacement filters are available through 2B Technologies. See our website: http://twobtech.com/parts-online.html.

2. Vent the EXHAUST port to atmospheric pressure and out of the room or shelter. The monitor has an internal scrubber that removes ozone (produced to oxidize NO to
NO₂) from the sample before exiting the instrument through the EXHAUST port. However, it is recommended that the pump exhaust be vented to a well-ventilated area outside the room or shelter in case the scrubber fails.

If the instrument is being flown on an aircraft, the inlet tube should not point into the wind, because the resulting pressure fluctuations will cause a noisy signal. Although the instrument compensates for temperature drift, if strong temperature fluctuations are expected, as in vertical profiling applications using balloons, the instrument should be placed in a thermally insulated box in order to slow the rate of temperature change.

3.5. Measurement of the Zero Offset; Auto Zero Function

The electronic zeros for NO₂ and NO may be measured by attaching a NOₓ scrubber to the air inlet for a period of 5-10 minutes. For an accurate measurement, the instrument must have been turned on long enough for the internal temperature to stabilize. The observed offset, which can amount to a few ppb, can be corrected by changing this calibration parameter from the front panel, as described in Section 4.5.2 below, or by correcting the data at a later time.

The instrument also has an Auto Zero function. The instrument can be programmed to periodically measure and apply new zero offsets for NO₂ and NO using an internal NOₓ scrubber. For most applications, it is sufficient to run the Auto Zero 1 to 2 times per day for a duration of a few minutes (at least 5 minutes recommended).

3.6. Data Averaging and Data Logging

When first turned on, the instrument will start making measurements at a rate of once every 5 s (unless a different averaging time was previously chosen; see Section 4.4). Internally generated data may be logged in the internal data logger. Up to 8,192 data lines containing log number, NO₂, NO, NOₓ, NO₂ zero, NO zero, Cell Temperature, Cell Pressure, Cell Volumetric Flow Rate, Ozone Volumetric Flow Rate, Sample Photodiode Voltage, O₃ Generator Photodiode Voltage, Heated Scrubber Temperature, Date, Time, and Status may be stored in internal memory. Averaging times of 5 s, 1 min, 5 min and 1 hr may be selected from the menu (Section 4.4), thereby allowing the instrument to operate for 1.4 days, 5.7 days, 1.0 months and 0.94 years, respectively, before filling the memory.

3.7. Collecting Data from the Analog Outputs

The data may be logged in real time using a data logger attached to the BNC analog outputs. There are two analog outputs: one for NO₂, and one for NO. The range of each analog output is 0-2.5 V, and the same user-selected scaling factor is applied to both outputs. The output is scaled according to a sensitivity you define in the menu. For example, you may define 2.5V = 250 ppb. In that case, the maximum output is 250 ppb, and 10 mV is equal to 1 ppb. There is a small positive offset, typically 2 mV in the analog output, but this offset varies from instrument to instrument. The offset can be measured by simultaneously observing the panel display and measuring the analog output with a voltmeter.
3.8. Collecting Data over the Serial Port in Real Time

To transmit data to a computer over the serial port in real time, connect the instrument to the computer using the 9-pin cable provided (and a serial-to-USB adapter cable if necessary). Note that the 9-pin cable provided is a “straight-through” female-female serial cable. A “cross-over” cable will not work. Start your data acquisition software, preferably using the 2B Technologies Display and Graphing Software (free download from http://twobtech.com/software.htm; see Appendix A for information on working with this software). Other terminal emulation software such as HyperTerminal (a program provided with earlier versions of Windows) or Tera Term may be used as well. Be sure to specify the baud rate setting of your data acquisition software to match the baud rate setting of your instrument. Note that the baud rate of the instrument is 2400.

The NO₂, NO and NOₓ mixing ratios (ppb, pphm, ppm), internal cell temperature (°C), cell pressure (mbar), volumetric flow rate (cc/min), date, and time are sent as comma-delimited ASCII text to the serial port (2400 baud; 8 bits; no parity; 1 stop bit) every 5 seconds, 1 minute, 5 minutes, or 1 hour, depending on the averaging time selected from the microprocessor menu. Time is provided in 24-hour (military) format, and the date is given in European style (day/month/year). The user should separately make note of the instrument settings for units (NO₂/NO/NOₓ) and averaging time.

A typical data line might read:

67.4,44.2,111.6,-5,8,30.3,980.6,1576,76.2,1.2743,1.0151,110.2,12/07/17,18:31:27,80

where:

NO₂ = 67.4 ppb
NO = 44.2 ppb
NOₓ = 111.6 ppb
NO₂_zero = -5 ppb
NO_zero = 8 ppb
Cell temperature = 30.3°C
Cell pressure = 980.6 mbar
Cell volumetric flow rate = 1576 cc/min
O₃ volumetric flow rate = 76.2 cc/min
Sample photodiode voltage = 1.2743 volts
O₃ generator photodiode voltage = 1.0151 volts
Heated scrubber temperature = 110.2°C
Date = July 12, 2017
Time = 6:31:27 pm
Status = 80 (Measuring NO₂ and NO) (see Section 5 for status codes)

If the NOₓ Monitor has been set to the log data mode, the output serial data line will be preceded by the log number; e.g.,

289,67.4,44.2,111.6,-5,8,30.3,980.6,1576,76.2,1.2743,1.0151,110.2,12/07/17,18:31:27,80

where 289 is the log number.
In addition to data lines, messages are written to the serial port when logging is begun or ended, when transmission of data from the logger is begun and ended, when data collection is interrupted (e.g., due to a power failure) and when the averaging time is changed. Section 5 of this manual describes the serial menu and how to access it.

3.9. Logging Data Using the SD Card

2B Technologies provides a SD card logger with the Model 405 nm NO$_2$/NO/NO$_x$ Monitor, along with an SD card and an SD card reader. When inserted into the instrument (bottom right of the Monitor’s front panel), the SD card automatically begins to collect and store data. (The internal data logger described in Section 3.6 will also be logging data if logging has been selected from the Dat submenu.) The data are saved to a .txt file in the following format:

67.4,44.2,111.6,-5,8,30.3,980.6,1576,76.2,1.2743,1.0151,110.2,12/07/17,18:31:27,80

where:

- NO$_2$ = 67.4 ppb
- NO = 44.2 ppb
- NO$_x$ = 111.6 ppb
- NO$_2$ _zero = -5 ppb
- NO _zero = 8 ppb
- Cell temperature = 30.3°C
- Cell pressure = 980.6 mbar
- Cell volumetric flow rate = 1576 cc/min
- O$_3$ volumetric flow rate = 76.2 cc/min
- Sample photodiode voltage = 1.2743 volts
- O$_3$ generator photodiode voltage = 1.0151 volts
- Heated scrubber temperature = 110.2°C
- Date = July 12, 2017
- Time = 6:31:27 pm
- Status = 80 (Measuring NO$_2$ and NO) (see Section 5 for status codes)

If the NO$_x$ Monitor has been set to the log data mode, the output serial data line will be preceded by the log number; e.g.,

289,67.4,44.2,111.6,-5,8,30.3,980.6,1576,76.2,1.2743,1.0151,110.2,12/07/17,18:31:27,80

where 289 is the log number.

Data files on the SD card are named “LOG01.txt,” “LOG02.txt,” etc. Note that the SD card contains a LOGCON.txt file that should not be modified or deleted.

Data logging on the SD card will continue until the instrument is powered off. A new data file is begun each time the instrument is powered on. (Note warning on next page.)

To eject the SD card, push it in to activate the spring mechanism. Insert the SD card into an SD card reader (one is supplied by 2B Technologies with the instrument) to download the data to your computer. (Note warning on next page.)
Important: When removing the SD card or powering off the instrument, up to 5 lines of data could be lost. (Note that if internal data logging was enabled, any lost lines could be retrieved from the internal data file.)

The Model 405 nm NO₂/NO/NOₓ Monitor is compatible with SD and SDHC memory cards. We recommend using the SD cards available on the 2B Technologies website (http://twobtech.com/parts-online.html). Prior to first use, SD cards must be formatted to FAT32. As mentioned above, an SD card and SD card reader are supplied with the Model 405 nm Monitor. See Technical Note 036 for more information about logging and reading data via the SD card.

3.10. Summary of Operating Recommendations

The following table summarizes operating recommendations mentioned in this manual.

<table>
<thead>
<tr>
<th>Operating Recommendation</th>
<th>Frequency</th>
<th>Section Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure and adjust cell flow rate and ozone flow rate before operating instrument</td>
<td>Whenever the instrument’s location changes in altitude</td>
<td>3.2</td>
</tr>
<tr>
<td>(restart instrument after adjustment of flows)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allow ~20 minutes for instrument warmup before taking data</td>
<td>Each startup</td>
<td>3.3</td>
</tr>
<tr>
<td>Inlet tubing should be made of inert materials, such as PTFE, PFA, FED, PVDF (do not use Tygon®, polypropylene, or metal tubing)</td>
<td>Each use</td>
<td>3.4</td>
</tr>
<tr>
<td>Use a Teflon or PVDF inlet filter; test it for NO₂ and NO loss</td>
<td>Each use</td>
<td>3.4</td>
</tr>
<tr>
<td>Vent exhaust to atmospheric pressure and out of room or shelter</td>
<td>Each use</td>
<td>3.4; also page vii</td>
</tr>
<tr>
<td>Check the span and zero offset; decide whether to make use of the instrument’s Auto Zero function</td>
<td>Periodically. For most applications, run the Auto Zero once or twice daily for 5-10 minutes.</td>
<td>3.5; 4.5.3, 4.7, 8</td>
</tr>
<tr>
<td>Perform multipoint calibration</td>
<td>• Annually</td>
<td>4.5.2; 7</td>
</tr>
<tr>
<td></td>
<td>• Any time major disassembly of components is performed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Any time the zero or span checks give results outside of the acceptable limits</td>
<td></td>
</tr>
<tr>
<td>If strong temperature fluctuations are expected, place the instrument in a thermally insulated box</td>
<td>User-defined</td>
<td>3.4</td>
</tr>
<tr>
<td>During aircraft sampling, do not point inlet tube into the wind</td>
<td>User-defined</td>
<td>3.4</td>
</tr>
<tr>
<td>Use adaptive filter if rapidly changing NO/NO₂ concentrations are occurring or are anticipated</td>
<td>User-defined</td>
<td>1.2; 5</td>
</tr>
</tbody>
</table>
4. THE MENU

4.1. Accessing the Main Menu

The instrument menu is accessed using the Select switch on the front panel of the instrument:

To reach the menu, hold in the Select switch (for up to several seconds) until the display shows: Menu. Then release the switch. The panel will now display:

Menu
Dat Avg Cfg Mod Zer ↵

where Dat, Avg, Cfg, Mod, and Zer are submenus that may be selected. A blinking cursor will show across the D of the Dat submenu. The Select switch may be rotated clockwise or counterclockwise to move the cursor under the first letter of one of the other submenus. To select a particular submenu, move the cursor under the first letter of the submenu and click (press in) the Select switch. To exit the Main Menu and begin making measurements again, select and click on the left arrow (↵). Note that “↵” always takes you up one level in the menu.

A diagram of the menu structure and detailed explanations of each of the submenus are given below.
4.2. Menu Tree

The following diagram summarizes the complete menu.
4.3. Dat Submenu: Internal Data Logging

4.3.1. To Start Logging Data

Select the Dat submenu from the Main Menu using the Select switch. The display will now show:

Data Menu
Xmt Log End ←

To start logging data, rotate the Select switch to move the cursor to Log and click to select the logging mode. You will then be asked whether you want to overwrite the data stored in the logger:

This will overwrite all existing data.
Are you sure?
No Yes ←

If you select yes and start logging, all data previously stored in the logger will be irretrievably lost. If you have data in the logger that you want to keep, be sure to download it before restarting logging.

If you are ready to start logging, then select Yes by moving the cursor under Yes and clicking. Either selection will return you to the Dat Menu. To start data acquisition, select ← and click to return to the main Menu and the select ← to begin making measurements.

When measurements resume, the display might read:

NO2= 34.8 ppb
--
LOG=193:0 Tsc=112
14:49 04/07/2017

where the NO2 (or NO) is the most current measurement of that species, LOG is the current log number (193 in this case), Tsc is the temperature (Celsius) of the NO2 scrubber, the time of the measurement is 14:49 (2:49 pm on 24-hr clock) and the date is 4 July 2017 (European style). The “0” in “193:0” refers to the number of 5-second data points that have been measured so far for inclusion in the next average to be displayed and logged (in this case, “0” is displayed because no averaging has been selected). After 5 seconds, as an example, the display will be replaced by:

NO2= 33.7 ppb

CF=1525 O3F=75
T=35.2 P=985.7

where NO2 (or NO) is the value most recently written to the logger, CF is the cell flow rate, O3F is the ozone flow rate (if NO is being measured), T is the temperature in Celsius, and P is the cell pressure in millibar.
If averaging has been selected (see Section 4.4 below), then the first display above will be replaced by:

\[
\text{AvgNO}_2 = 56.7 \text{ ppb}
\]

\[
\begin{array}{l}
\text{LOG} = 193:4 \\
14:49 \\
04/07/2017
\end{array}
\]

Again 193 refers to the most recent log number. The “4” in 193:4 refers to the number of 5-s data points that have been measured so far for inclusion in the next average to be displayed and logged. If 5-s averaging is used, this number will always be 0. If 1-min averaging is used, this number will increment from 0 to 11; for 5-min averaging, the number will increment from 0 to 59; and for 1-hr averaging, it will increment from 0 to 719. This number is displayed so that the user will know how many more 5-s measurements need to be made before a new average is displayed and logged.

Note that entering the menu will interrupt the averaging interval that is in progress, and the averaging interval will start over when the menu is exited and measuring is resumed.

If there is a power failure while the instrument is in the logging mode, logging will resume after power is restored. A note of

Data Interrupt

will be written to the logger prior to writing the first new data line. In the case of a power failure, a data line may be lost because the microprocessor writes to the logger memory in groups of two lines. All data residing only in the volatile memory of the microprocessor are lost when power is interrupted.

The instrument can accommodate multiple data interruptions due to power failures. For example, one can purposely switch the instrument off, move to another location and restart logging simply by turning the instrument back on.

4.3.2. To Stop Logging Data

Hold the Select switch down to obtain the Menu. Go to the Dat submenu by clicking on Dat. Choose and click on the End function. This will end data logging. You may now transmit the data to a computer by clicking on Xmt (see below). Alternatively, you may return to the Menu and resume measurements by clicking on ←. The stored data will reside in memory (even when new measurements are being made) and can be transmitted using the Xmt function as often as you like. However, all stored data are lost once logging is started again using the Log function. Thus, you should always transmit your data to a computer before restarting logging.

If you fail to End logging prior to transmitting the data using the Xmt function, the instrument will automatically execute the End function for you prior to transmitting the data.
4.3.3. To Transmit Logged Data

Connect the serial port of the instrument to the serial port of your computer using the cable provided. If your computer does not have a serial port, you can use the computer’s USB port by means of a serial-to-USB adapter. Such adapters are available in most computer stores or can be supplied by 2B Tech. Enable a data acquisition program on the computer such as the 2B Technologies Display and Graphing Software (free download available from http://twobtech.com/software.htm), Microsoft HyperTerminal (available on earlier Windows® platforms, usually in Start/AllPrograms/Accessories/Communications/HyperTerminal) or Tera Term, which can be downloaded at:

Note that a disadvantage of HyperTerminal is that it has a 500-line buffer limit. However, all programs may be used to log an unlimited number of data lines to a file on your computer. For more details, see our Tech Note #007 here:

Hold down the Select switch to obtain the Main Menu. Go to the Dat submenu by clicking on Dat. Next, click on Xmt. The message “Logged Data” will be written to the serial port, followed by a carriage return and all of the lines of logged data. After all data are transmitted, the message “End Logged Data” and a carriage return are written. After transmission is complete, you can return to any position in the menu or resume NO₂ measurements. The logged data continues to be available for transmission until a new data log is started.

4.4. Avg Submenu: To Average Data

Hold down the Select switch to obtain the Menu. Select and click on Avg to obtain the Avg menu:

Avg Menu
 5s 1m 5m 1h ←

Use single clicks to move the cursor to 5s, 1m, 5m or 1h for averaging times of 5s, 1 min, 5 min or 1 hr averaging, respectively. Then click on the averaging time you want to use. To return to the Main Menu, click on ←. To exit the Main Menu and start acquiring data, click on ← again.

While in averaging mode, the current 5-s measurement is displayed alternately with the average value, as discussed in Section 4.3 above. Note that entering the menu will interrupt the averaging interval that is in progress, and the averaging interval will start over when the menu is exited and measuring is resumed.

Averaged data may be logged, thereby greatly extending the length of time that the data logger can be used.
4.5. **Cfg Submenu: Instrument Configuration**

Several different parameters including date/time, calibration, and input/outputs can be accessed and set through the configuration or **Cfg** submenu.

4.5.1. To Set the Time and Date

From the **Main Menu**, select the **Cfg** submenu. Next, select the **D/T** submenu. The display will read, for example:

```
Set Date and Time

14:32:21 ←
17/07/2017
```

meaning that it is 21 seconds after 2:32 p.m. on July 17, 2017 (military time and European date). To change a number in the date and time, rotate the Select switch to underline the numeral you want to change. A single click then causes a blinking cursor to cover that numeral. The number can then be changed by rotating the Select switch. Once the number is correct, click on the Select switch to turn off the blinking cursor. You may now rotate the Select switch to choose another numeral to change. Once the time and date is correct, clicking on ← will set the internal clock to that time and return the display to the **Cfg** menu. As in setting a digital watch, the seconds should be set in advance of the real time since the clock starts to run again only when the set time is entered; in this case by clicking on ←.

4.5.2. Calibration Parameters - Overview

All calibration parameters can be accessed through the **Cfg / Cal** submenu. Slope and offset calibration parameters may be set for NO₂, NO, Cell Flow Rate, Ozone Flow Rate, and internal Ozone Source. Calibrations are performed at 2B Technologies and these calibration parameters are set prior to the instrument being packaged and shipped. Flow rates and flow meter calibration parameters should not be changed unless certain parts of the instrument are replaced which are normally done by technicians at the factory. The user should check and adjust flow rates if the instrument is moved to a different altitude (see Section 3.2). You may want to change the NO₂ and NO calibration parameters based on your own calibrations.

4.5.3. To Set the NO₂ and NO Calibration Parameters

The instrument is calibrated at the factory, where slope and offset parameters for NO₂ and NO are entered into the instrument’s memory. These preset calibration parameters are given in the instrument’s Birth Certificate and recorded on the calibration sticker viewable with the top cover removed. However, the calibration parameters may be changed by the user. For example, it may be desirable to provide a positive offset by a known amount (e.g., 10 ppb) if the analog output is being used for external data logging since the analog output does not go negative below zero ppb. Because of noise and/or an inherent offset, some measured values will be below zero at very low NO₂ or NO mixing ratios. (When measuring zero NO₂ or NO concentration, there should be an equal number of negative and positive values if the instrument is zeroed.) Also, the instrument zero may drift by a few ppb over time. For
this reason, frequent zeroing of the instrument using the Auto Zero function is recommended. For most applications, running the Auto Zero once or twice daily, for a duration of at least 5 minutes, is sufficient. Any change in the slope (gain) of the instrument is likely due to a serious problem such as contamination, an air leak, obstruction of air flow, or a contaminated NO₂ or NOₓ scrubber, but it also can be adjusted. Once the zero of the instrument is corrected, the slope may be adjusted so that the instrument readout agrees with a standard NO₂ or NO source or with the readout from another instrument whose calibration is considered to be accurate.

To adjust the calibration slope and zero offset calibration parameters, first access the Cal menu from the Cfg menu. There are three submenus:

Cal Menu

NO₂ NO Flow ←

To change the NO₂ or NO calibration parameters, select NO₂ or NO from the Cal menu. Now you can select either **Slope** or **Zero** to adjust slope factor or the zero offset. For example, for NO₂, the submenu will appear as:

NO₂ Cal Menu

Slope Zero ←

Selecting **Slope** will allow you to set the slope (sensitivity) value one digit at a time out to three decimal places.

NO₂ Slope Cal

Slope = 1.011 ←

To change a digit in the slope or the offset, rotate the Select switch to underline the numeral you want to change. A single click then causes a blinking cursor to cover that numeral. The number can then be changed by rotating the Select switch. Once the number is correct, click on the Select switch to turn off the blinking cursor. You may now rotate the Select switch to choose another numeral to change. Once the slope is correct, clicking on ← will set the slope to that value and return the display to the **NO₂ Cal Menu** menu.

Selecting **Zero** from the menu will display:

NO₂ Zero Cal

Zero = -002.5 ←

Here Zero is the offset applied (in this case -2.5 ppb). The Zero value can be edited in the same manner as the Slope value. For both NO and NO₂, the Zero value must be entered in units of ppb. If the calibration was performed in other units, convert the offset to ppb and enter that value.

The value of Zero is added to the measured NO₂ or NO value, and the value of Slope is then multiplied by the measured value. For example, if the instrument reads an average of 3.2 ppb with an external scrubber in place, the value of Z should be set to -003.2. If after correction for the zero, the instrument consistently reads 2.3% low, the value of Slope should be set to 1.023.
4.5.4. **To Set the Flow Meter Slopes**

Two different flow measurements are critical to the performance of the instrument: one is the cell flow rate and the other is the ozone flow rate. Do NOT change these settings unless you contact 2B Technologies. To change the flow meter slope (sensitivity) calibration parameters, access the **Cfg / Cal / Flow** submenu:

Flow Cal Menu

Cell_Flw O3_Flw

Selecting the Cell_Flw submenu allows you to change the slope calibration parameter for the cell flow rate:

CFlow Cal Menu

CF = 1.03

You may change this multiplicative calibration parameter by selecting the first numeral, and then rotating the select switch to scroll up to the desired decimal value, and deselecting. To change the ozone flow meter calibration parameters, select **O3_Flw** and set in the same manner as for the cell flow rate.

4.5.5. **To Change the Analog Output Scaling Factor**

Analog outputs proportional to NO$_2$ and NO concentrations are provided via BNC connectors at the back of the instrument for those who want to record NO$_2$ and NO concentration data with a chart recorder or external logger. The full scale of each analog output is 2.5 V, and the same scaling factor is applied to both analog outputs. In the **Cfg / I/O** submenu, selecting **Vout** displays the submenu:

Analog Output

2.5V=000250 ppb

In this example, the output scaling factor is set as 2.5 Volt = 250 ppb. Since the maximum output voltage is 2.5 V, the maximum output concentration in this case is 250 ppb, and 1 ppb will provide an output of 10 mV. You can use the Select switch to change the scaling factor to the value of your choice by selecting and changing the individual digits in the scaling factor. A click on \leftrightarrow returns the display to the I/O menu.

4.5.6. **Measurement Units for NO$_2$ and NO**

Select the **Cfg / Unt** menu to display the following:

NOx Units

NOx: ppb

Select the units (ppb in this case) and rotate the Select switch to cycle the cursor between the choices of units. NO$_2$ (and NO) units may be selected as ppb, pphm and ppm. A click on \leftrightarrow returns the display to the **Unt** menu.

4.6. **Mod Submenu: Measurement Modes**

The Model 405 nm has the capability to measure nitrogen dioxide and nitric oxide each individually or simultaneously (5 seconds apart). There are 3 measurement modes available: NO$_2$ mode, NO mode, and NO$_2$ and NO mode. The measurement
mode can be changed by entering the **MOD** menu and selecting either “NO2”, “NO2/NO”, or “NO”. If using a serial connection, the mode can be changed using serial commands “G” for NO₂ mode, “B” for NO₂ and NO mode, or “N” for NO mode. The status byte at the end of the serial stream tells which mode you are currently in (see Section 5 for status codes).

4.6.1. **NO₂ Mode**

This measurement mode uses two 5 second cycles to measure I and I₀ for NO₂. After each cycle, a new measurement of nitrogen dioxide is computed and output to the LCD and through the serial port depending on what averaging frequency is selected (5 sec, 1 min, 5 min, or 1 hr).

4.6.2. **NO₂ and NO Mode**

This measurement mode uses three 5-second cycles to measure I₀ for NO₂, I for NO₂, which is also I₀ for NO, and I for NO. After each 5-second cycle, a new measurement of nitrogen dioxide and nitric oxide is computed and output to the LCD and through the serial port, depending on what averaging time is selected (5 sec, 1 min, 5 min, or 1 hr).

4.6.3. **NO Mode**

This measurement mode uses two 5 second cycles to measure I and I₀ for NO. After each cycle, a new measurement of nitric oxide is computed and output to the LCD and through the serial port, depending on what averaging frequency is selected (5 sec, 1 min, 5 min, or 1 hr).

4.7. **Zer Submenu: Auto Zeroing**

The Model 405 nm is equipped with an Auto Zeroing valve to sample air drawn through a NOₓ scrubber. The frequency and duration of the Auto Zeroing function can be set via the display (see below) or by entering the serial menu (see Section 5). For most applications, running the Auto Zero once or twice daily, for a duration of at least 5 minutes, is sufficient.

4.7.1. **Zero Duration**

The duration in minutes (0-60) is set through the **Zer** menu function of the serial or LCD menu. After each auto or forced zero is complete, the second half of all of the measurements measured during the Auto Zero duration are averaged and used as the zero average. This computed zero average is added to or subtracted from all future measurements. For example, if the zero duration is set to 6 minutes, the measurements over the last 3 minutes are averaged to compute the new zero.

4.7.2. **Zero Frequency**

The zero will automatically occur every X minutes (0-1499) at the frequency set in the zero-frequency LCD menu or serial menu. For example, if the frequency is set to 60, the Auto Zero will occur every hour. If this value is set to zero, the Auto Zero function is disabled and the values in NO₂ zero and NO zero are cleared.
5. REMOTE CONTROL VIA SERIAL CONNECTION

Measurements and logging tasks can be accessed via the serial port using the 2B Technologies Display and Graphing software (available as a free download from http://twobtech.com/software.htm; see Appendix A for information on working with this software) or a terminal emulator such as Tera Term or HyperTerminal running on an attached computer. Commands can be sent using the terminal emulator set with the properties listed in the section of this manual entitled “Collecting Data over the Serial Port in Real Time” (Section 3.8). Listed below are the lower-case letters that are commands for performing certain operations while the instrument continues to measure:

<table>
<thead>
<tr>
<th>Key Stroke</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>Start logging.</td>
</tr>
<tr>
<td>t</td>
<td>End logging and transmit data.</td>
</tr>
<tr>
<td>e</td>
<td>End logging.</td>
</tr>
<tr>
<td>N</td>
<td>Set the current mode to measure Nitric Oxide.</td>
</tr>
<tr>
<td>G</td>
<td>Set the current mode to measure Nitrogen Dioxide.</td>
</tr>
<tr>
<td>B</td>
<td>Set the current mode to measure both NO\textsubscript{2} and NO.</td>
</tr>
<tr>
<td>Z</td>
<td>Force a zero.</td>
</tr>
<tr>
<td>h</td>
<td>Output the serial header.</td>
</tr>
</tbody>
</table>

5.1. Serial Menu

If the letter m is sent as a command, measurements will stop and menu> will be displayed in the terminal emulator window. When the serial menu is accessed, the instrument is no longer making measurements; it is waiting for the next command to be entered. The following is the list of menu items accessible from this point:

<table>
<thead>
<tr>
<th>Key Stroke</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>Start logging.</td>
</tr>
<tr>
<td>t</td>
<td>End logging and transmit data.</td>
</tr>
<tr>
<td>e</td>
<td>End logging.</td>
</tr>
<tr>
<td>a</td>
<td>Set average and output frequency.</td>
</tr>
<tr>
<td>z</td>
<td>Set the NO\textsubscript{2} zero offset calibration factor (in units of ppb).</td>
</tr>
<tr>
<td>s</td>
<td>Set the NO\textsubscript{2} slope calibration factor.</td>
</tr>
<tr>
<td>o</td>
<td>Set the NO zero offset calibration factor (in units of ppb).</td>
</tr>
<tr>
<td>g</td>
<td>Set the NO slope calibration factor.</td>
</tr>
<tr>
<td>#</td>
<td>Set the Zeroing frequency (minutes, 0-1499).</td>
</tr>
<tr>
<td>!</td>
<td>Set the Zeroing duration (minutes, 0-60).</td>
</tr>
<tr>
<td>c</td>
<td>Set the time and date.</td>
</tr>
<tr>
<td>n</td>
<td>Leave time and date unchanged.</td>
</tr>
<tr>
<td>t</td>
<td>Change time (must enter new values).</td>
</tr>
<tr>
<td>d</td>
<td>Change date (must enter new values).</td>
</tr>
<tr>
<td>f</td>
<td>Turn the LCD backlight on.</td>
</tr>
<tr>
<td>F</td>
<td>Turn the LCD backlight off.</td>
</tr>
</tbody>
</table>
5.2. Status Codes

The current measurement mode can be determined from the status byte in each serial data line. The following describes all combinations of the status byte and the corresponding measurement mode:

<table>
<thead>
<tr>
<th>Status Byte</th>
<th>Measurement Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>Measuring NO\textsubscript{2} and NO</td>
</tr>
<tr>
<td>10</td>
<td>Measuring NO\textsubscript{2}</td>
</tr>
<tr>
<td>20</td>
<td>Measuring NO</td>
</tr>
<tr>
<td>81</td>
<td>Measuring NO\textsubscript{2} and NO Zero</td>
</tr>
<tr>
<td>11</td>
<td>Measuring NO\textsubscript{2} Zero</td>
</tr>
<tr>
<td>21</td>
<td>Measuring NO Zero</td>
</tr>
</tbody>
</table>
6. MAINTENANCE

The Model 405 nm NO₂/NO/NOₓ Monitor is designed to be nearly maintenance free. Components that require routine maintenance include the ozone scrubbers on the cell exhaust and the DewLine™ Nafion tubing on the cell inlet, both of which should be changed every year, and the air pump. The pump has a rated lifetime of 15,000 hours (~1 year and 8 months) of operation and will need to be replaced when the flow rates can no longer be brought into range (see Section 3.2). Operation with a high restriction on the sample inlet will reduce the lifetime of the pump. The instrument is designed so that pump replacement is relatively easy. Other user-serviceable components include the LED, clock battery and solenoid valves, which are easily replaced should they fail. In addition, the inlet filter (user supplied) should be changed as recommended by the filter manufacturer. See Section 9 of this manual for troubleshooting information.

A wide range of Technical Notes are provided on the 2B Tech website. The complete list with links may be found at www.twobtech.com/downloads_tech_notes.htm These Tech Notes are continuously updated and new ones created.

Also, please note that all 2B Tech instrument manuals are posted online at:

http://www.twobtech.com/downloads.htm

For your convenience, a Service Log, which may be printed, is provided at the end of this manual for recording calibrations, replacement of pumps, LEDs, etc. Records of repairs made at 2B Tech are maintained in a database at 2B Technologies as well. That database also includes detailed information about the construction and initial calibration of your instrument, including digital of photos of its interior.

<table>
<thead>
<tr>
<th>Maintenance Recommendation</th>
<th>Frequency</th>
<th>Section Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recalibrate instrument</td>
<td>At least once per year or at 4000 hours; sooner if span and offset are large, or if instrument undergoes major disassembly</td>
<td>7</td>
</tr>
<tr>
<td>Check flow path for contamination</td>
<td>Occasionally</td>
<td>Contact 2B Tech if contamination is suspected</td>
</tr>
<tr>
<td>Check NOₓ and NO₂ scrubbers, exhaust gas O₃ scrubbers, and DewLine™ Nafion tubing and replace if needed</td>
<td>Every 6 months of continuous operation (~4,000 hrs); otherwise annually</td>
<td>6</td>
</tr>
<tr>
<td>Monitor flow rates and replace pump if indicated</td>
<td>Nominal 15,000 hours pump lifetime</td>
<td>6</td>
</tr>
</tbody>
</table>
7. CALIBRATION

Calibration of the Model 405 nm NO₂/NO/NOₓ Monitor is recommended at least annually, either by the user (recommended procedure described below) or by returning the instrument to 2B Technologies for calibration servicing.

7.1. Introduction

Every analytical instrument is subject to some drift and variation in response, making it necessary to periodically check the calibration. Dynamic calibration is a multipoint check where gas samples of known concentration are sampled by the instrument in order to determine a calibration relationship. For more information on calibration of NO₂ and NO monitors, please refer to the related information in Code of Federal Regulations (Title 40, Part 50, Appendix F: https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol2/pdf/CFR-2011-title40-vol2-chap1.pdf).

Calibration is the process of adjusting the gain and offset of the Model 405 nm against some recognized standard. The reliability of the data collected from any analytical instrument depends on the accuracy of the calibration, which is largely dependent upon its analytical traceability to a reference material or reference instrument calibration.

The calibration of NO₂ and NO monitors using compressed gas mixtures is unreliable because the gases are lost by reaction and adsorption in the cylinder and on gas handling equipment. When concentration standards are required, NO₂ and NO concentrations are generated by diluting a high concentration NO mixture and converting a fraction of the NO to NO₂ via the gas-phase titration reaction with ozone. The depletion of NO measured by the Model 405 nm provides the calibration for NO, and the appearance of NO₂ provides the calibration of NO₂. The concentration of ozone used in the gas-phase titration (GPT) reaction can be measured using a photometer with a NIST-traceable calibration to validate the difference in concentrations for both NO₂ and NO.

Commercial NO₂ and NO calibrators have dynamic dilution manifolds with an internal ozone generator and photometer. The calibrator generates NO₂ concentrations by the technique of gas phase titration (GPT), in which standard ozone concentrations are reacted with excess NO. Nitric oxide standards are generated by difference, where standard ozone concentrations are reacted with excess NO and the change in NO concentration is measured.

7.2. Equipment Required

This procedure requires the following equipment:

1. NO₂ and NO calibrator
2. Zero air source
3. Compressed NO standard (refer to the manufacturer's User Manual for the calibrator)
4. Sampling lines (inert materials such as PTFE or FEP only)
Zero air can be generated either from compressed cylinders or from scrubbed ambient air. If ambient air is used, contaminants such as nitrogen dioxide and nitric oxide must be removed. The Model 405 nm will perform better if the zero air has humidity in the range 10-90 %RH. A set of DewLine™ Nafion® tubing is included with the Model 405 nm for installation between a dry gas supply and the instrument. The DewLine™ Nafion tubing introduces humidity to dry air or calibration standards without loss of NO₂ or NO.

7.3. Setup Check

A visual inspection of the calibration setup should be performed before performing a calibration to verify that the setup is in proper order. All plumbing connections should be checked. Any obvious leaks should be fixed and the sampling tee and sampling lines should be checked for general cleanliness. For more information, refer to the manufacturer's User Manual for the calibrator.

7.4. Calibration Procedure

A multipoint calibration should be performed at least every 12 months. Within this calibration frequency, a multipoint calibration is advised whenever major disassembly of components is performed, or any time the zero or span checks give results outside of the acceptable limits.

7.4.1. Instrument Preparation

1. Turn on the Model 405 nm and allow it to stabilize for a minimum of 1 hour.
2. Enter the calibration menu (Main Menu /Cfg / Cal) and set the zero values to 0 and the slope values to 1.00 for both NO₂ and NO.
3. Connect the monitor to a sampling tee from the calibrator. The outlet of the calibrator must be vented to atmosphere so that pressure does not build up in the setup. Connection of the Model 405 nm directly to a pressurized output of any device can damage the monitor.
4. Verify that there is an overflow at the vent of the sampling tee.

7.4.2. Measurement of Zero Air

1. Verify that the zero-air supply is on and the calibrator is set to output zero air only.
2. Allow the Model 405 nm to sample zero air until the response is stable.
3. Record the average zero air responses.
7.4.3. Measurement of NO₂ and NO Standards

1. Allow the Model 405 nm to sample zero air until a stable response is measured and record the average responses.
2. To equilibrate the system, generate an NO concentration significantly higher than twice the concentration range of NO₂ that will be calibrated and allow the calibrator and equipment to equilibrate for at least 10 minutes.
3. The NO concentration should not be changed for the rest of the calibration.
4. Allow the Model 405 nm to sample the NO concentration standard until a stable response is measured and record the average responses.
5. Generate an ozone concentration at the high end of the concentration range of NO₂ that will be calibrated and allow the calibrator and equipment to equilibrate for at least 10 minutes.
6. Allow the Model 405 nm to sample the NO₂ and NO concentration standards until a stable response is measured and record the average responses.
7. Generate several other ozone concentrations to produce other concentrations of NO₂ and NO. At least 4 concentration standards are recommended over the range of interest.
8. For each concentration, record the responses of the Model 405 nm.
9. Turn off the ozone generator and continue to produce the NO concentration used during the calibration process and allow the calibrator and equipment to equilibrate for at least 10 minutes.
10. Verify that the standing NO concentration used during the calibration did not change more than a few ppb from the beginning of the calibration procedure. If the NO concentration is significantly different at the beginning and end of the calibration, then the calibration setup was not adequately equilibrated before collecting measurements.
11. Allow the Model 405 nm to sample zero air until a stable response is measured and record the average responses.

7.4.4. Calibration Curve

1. Calculate the measured NO₂ as the difference between the average zero response and the response at each concentration of NO₂. Any offset from background NO₂ released from the GPT chamber will be cancelled out this way.
2. Calculate the measured NO as the difference between the average standing NO concentration during the calibration and response at each concentration of NO.
3. Calculate the average NO₂ and NO measurement for zero air and use this zero for the calibration curve.
4. Plot the Model 405 nm measurements (y-axis) versus the corresponding standard concentrations (x-axis) for both the measured NO₂ and NO.
5. Fit the data to a straight line (\(y = mx + b \)) using the linear regression technique to determine the calibration relationships, where \(m = \) slope and \(b = \) intercept.
6. Determine if any points deviate significantly from the line, which is an indication of an error in determining the calibration curve. The error may
be due to the calibration setup or the monitor being calibrated. The most likely problems in the monitor are leaks, contamination of the DewLine™ Nafion tubing, a contaminated valve, or contamination in the optical setup. See Section 9, the “Troubleshooting” section of this manual.

7. The inverse slope of the line \((1/m)\) is the gain factor and the negative of the intercept \((-b, \text{in units of ppb})\) is the offset that need to be applied to the monitor response to calibrate it. If the intercept is outside of the range from -15 to 15 ppb or the slope is outside of the range from 0.90 to 1.10, this is an indication of a problem in the calibration setup or the monitor being calibrated. The most likely problems in the monitor are leaks, contamination of the DewLine™ Nafion tubing, a contaminated valve, or contamination in the optical setup. See the “Troubleshooting” section of the manual (Section 9).

8. Enter the calibration menu (Main Menu / Cfg / Cal) in the instrument software and set the calibration parameters. Note that the offset \((Z)\) parameter must be entered in units of ppb. If the calibration has been performed in other units, convert the offset to ppb before entering the value.

8. **PERIODIC ZERO AND SPAN CHECKS**

To ensure the quality of the monitor data, periodic zero and span checks can be performed by following the steps below:

1. A zero check is performed by sampling zero air with the Model 405 nm following the “Measurement of Zero Air” Section 7.4.2 above. Alternatively, an Auto Zero can be scheduled to occur periodically as described in Section 4.7.

2. A span check is performed by first sampling a mixture of NO\(_2\) and NO concentrations at the high end of the NO\(_2\) concentration range of interest following the “Measurement of NO\(_2\) and NO Standards” Section 7.4.3 above.

3. Finish the span check by sampling a mixture of NO\(_2\) and NO concentrations at the low end of the NO\(_2\) concentration range of interest following the “Measurement of NO\(_2\) and NO Standards” Section 7.4.3 above.

4. Calculate the difference in both the NO\(_2\) and NO measurements, which should be the same as the ozone concentration added to the GPT reaction chamber.

5. Average measurements from the zero check or span check should be within the instrument specifications. If this is not the case, a more thorough multipoint calibration in the NO\(_2\) concentration range of interest is advised, following the steps as described above in the “Measurement of NO\(_2\) and NO Standards” Section 7.4.3.
If the instrument fails to operate correctly, common problems can be identified and corrected using Table 9.1. If the problem cannot be easily corrected, please contact Customer Service at 2B Tech via our web ticketing software at:

www.twobtech.com/techsupport.htm

Alternatively, you can email us at techsupport@twobtech.com or call us at +1(303) 273-0559. If we mutually determine that the instrument cannot be repaired onsite, we will provide you with a Return Authorization number and a short form to be filled out and returned to our Service Department along with the instrument.

The figures following Table 9.1 provide a “guided tour” of the Model 405 nm NO₂/NO/NOₓ Monitor™ so that critical components and connectors may be easily identified. A list of serviceable parts is provided in Section 12 at the end of this manual.

Table 9.1. Troubleshooting the NO₂/NO/NOₓ Monitor for performance problems.

<table>
<thead>
<tr>
<th>Problem/Symptom</th>
<th>Likely Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument does not turn on.</td>
<td>Power not connected properly or circuit breaker open.</td>
<td>Check external power connection for reverse polarity or a short and wait a few minutes for the thermal circuit breaker to reset.</td>
</tr>
<tr>
<td></td>
<td>Power cable not connected to circuit board.</td>
<td>Remove top cover and disconnect and reconnect power cable to circuit board.</td>
</tr>
<tr>
<td>Instrument turns on then powers off.</td>
<td>Burned out air pump.</td>
<td>Remove top cover and unplug air pump. Turn instrument on; if it remains running, then the air pump motor is burned out and shorting. Replace air pump.</td>
</tr>
<tr>
<td>Display is blank or displays unreadable characters.</td>
<td>Bad connection of display to circuit board.</td>
<td>Remove top cover and reconnect display to circuit board. Check solder connections to display.</td>
</tr>
<tr>
<td>Cell temperature reads low by several 10’s of degrees.</td>
<td>Absent or loose connection of temperature probe cable to circuit board.</td>
<td>Remove top cover and reattach connector to circuit board.</td>
</tr>
<tr>
<td>Problem/Symptom</td>
<td>Likely Cause</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Readings are noisy with standard deviations much greater than 3 ppb using 5-second averaging.</td>
<td>LED output is weak</td>
<td>Remove top cover and check LED connection to circuit board. Run LED Test from menu. If photodiode voltage is less than 0.5 V, replace LED.</td>
</tr>
<tr>
<td></td>
<td>Excessive vibration</td>
<td>Provide additional vibration insulation for the instrument such as a foam pad.</td>
</tr>
<tr>
<td></td>
<td>Flow path contaminated</td>
<td>Contact 2B Technologies for instructions if contamination is suspected.</td>
</tr>
<tr>
<td>Analog output is constant or does not track front display.</td>
<td>Cable not properly connected between analog output BNC and circuit board.</td>
<td>Remove top cover and reconnect cable between analog output and circuit board.</td>
</tr>
<tr>
<td></td>
<td>Wrong scaling factor selected in Menu.</td>
<td>Check and reset analog output scaling factor in the Menu.</td>
</tr>
<tr>
<td>Select switch does not work.</td>
<td>Cable not properly connected between Select switch and circuit board.</td>
<td>Remove top cover and reconnect Select switch cable to circuit board.</td>
</tr>
<tr>
<td>Serial port does not work.</td>
<td>Cable not properly connected between serial 9-pin connector and circuit board.</td>
<td>Remove top cover and reconnect serial port cable to circuit board.</td>
</tr>
<tr>
<td></td>
<td>Wrong serial cable used.</td>
<td>A “straight through” serial cable is provided. Some data collection devices require a “cross over” cable in which pins 1 and 3 are exchanged between the two ends of the cable. Use a “cross over cable or additional connector that switches pins 1 and 3.</td>
</tr>
<tr>
<td></td>
<td>Wrong baud rate selected.</td>
<td>Make sure that the baud rate chosen in the Model 405 nm menu matches the baud rate setting of your data acquisition program.</td>
</tr>
<tr>
<td>Problem/Symptom</td>
<td>Likely Cause</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Required calibration parameters are outside the adjustable range when calibrated using a known calibration gas. | Flow path is contaminated.
Solenoid valve is contaminated and not opening & closing properly.
Air pump is not drawing sufficient flow. | Contact 2B Technologies for instructions if contamination is suspected.
Remove solenoid valve, rinse with methanol, dry with zero air, and replace.
As a first check, hold your finger over the air inlet to determine whether air is being drawn in. If there is flow, measure the flow rate by removing the top cover and attaching a high conductance flow meter (allows air to flow freely and does not cause significant pressure drop) to the exit port of the pump. Air flow should be greater than 1.4 L/min. If flow is lower, check for leaks. If there are no leaks, replace air pump. |
| Instrument always reads close to zero for NO₂ concentrations. | Solenoid valve cable is not properly connected to circuit board.
Internal NO₂ scrubber is exhausted. | Reattach solenoid valve cable to circuit board.
Contact 2B Technologies about replacement of the internal NO₂ scrubber. |
Figure 10.1. *Top view of Model 405 nmNO₂/NO/NOₓ Monitor with cover removed.*
Figure 10.2. Bottom view of NO\(_2\)/NO/NO\(_x\) Monitor with cover removed.
Figure 10.3. DBNOx Printed Circuit Board
Figure 10.4. Power Board
Figure 10.5. *LED Power Board*
Figure 10.6. *Front and Back of Instrument*

- **Power Switch**
- **Select Switch**
- **SD Data Logger**
- **12-V Power In**
- **BNC Analog NO₂ Output, 0-2.5 V**
- **RS-232 Serial Port**
- **BNC Analog NO Output, 0-2.5 V**
- **Exhaust Gas**
- **Room Air Inlet for O₃ Generator**
- **Ozone Flow Rate Adjustment**
- **Cell Flow Rate Adjustment**
- **Air Inlet, ¼-in Use PTFE, PFA or Other Inert Tubing Only**
11. WIRING CONNECTIONS

[For DBNOx board: Counter clockwise from upper right corner of Figure 10.3.]

<table>
<thead>
<tr>
<th>Description</th>
<th>Circuit Board</th>
<th>Connection</th>
<th>Lead Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line In</td>
<td>Main (DBNOx)</td>
<td>J12</td>
<td>Red/Black</td>
</tr>
<tr>
<td>Reactor Bypass Valve</td>
<td>Main (DBNOx)</td>
<td>J31</td>
<td>Yellow/Black</td>
</tr>
<tr>
<td>LED Power Out</td>
<td>Main (DBNOx)</td>
<td>J22</td>
<td>Purple/White</td>
</tr>
<tr>
<td>Relay Control Out (Heater)</td>
<td>Main (DBNOx)</td>
<td>J23</td>
<td>Blue/Black</td>
</tr>
<tr>
<td>O<sub>3</sub> Generator Power</td>
<td>Main (DBNOx)</td>
<td>J21</td>
<td>Red/Blue</td>
</tr>
<tr>
<td>Pressure Regulator</td>
<td>Main (DBNOx)</td>
<td>J20</td>
<td>Black/Black</td>
</tr>
<tr>
<td>SD Data Logger</td>
<td>Main (DBNOx)</td>
<td>J35</td>
<td>Red/Yellow/Brown/Black</td>
</tr>
<tr>
<td>Serial RS-232</td>
<td>Main (DBNOx)</td>
<td>J26</td>
<td>Yellow/Brown/Black</td>
</tr>
<tr>
<td>NO Analog Output</td>
<td>Main (DBNOx)</td>
<td>J11</td>
<td>White/Black</td>
</tr>
<tr>
<td>Ozone Valve</td>
<td>Main (DBNOx)</td>
<td>J8</td>
<td>Black/Black</td>
</tr>
<tr>
<td>NO<sub>2</sub> Scrubber Valve</td>
<td>Main (DBNOx)</td>
<td>J19</td>
<td>Yellow/Black</td>
</tr>
<tr>
<td>Ozone On/Off Valve</td>
<td>Main (DBNOx)</td>
<td>J18</td>
<td>Black/Black</td>
</tr>
<tr>
<td>Zero Valve</td>
<td>Main (DBNOx)</td>
<td>J15</td>
<td>Red/Blue/Black</td>
</tr>
<tr>
<td>Cell Flow</td>
<td>Main (DBNOx)</td>
<td>J32</td>
<td>Red/Blue/Black</td>
</tr>
<tr>
<td>Ozone Flow</td>
<td>Main (DBNOx)</td>
<td>J9</td>
<td>Red/Blue or Green/Black</td>
</tr>
<tr>
<td>O<sub>3</sub> Generator Photodiode</td>
<td>Main (DBNOx)</td>
<td>J4</td>
<td>Red/Blue/Black/Green</td>
</tr>
<tr>
<td>LCD</td>
<td>Main (DBNOx)</td>
<td>J10</td>
<td>Rainbow Ribbon</td>
</tr>
<tr>
<td>Cell Temperature</td>
<td>Main (DBNOx)</td>
<td>J6</td>
<td>Red/Orange/Green</td>
</tr>
<tr>
<td>Scrubber Temperature</td>
<td>Main (DBNOx)</td>
<td>J38</td>
<td>Red/Orange/Green</td>
</tr>
<tr>
<td>Sample Photodiode</td>
<td>Main (DBNOx)</td>
<td>J29</td>
<td>Red/Blue/Black/Green</td>
</tr>
<tr>
<td>Select Switch</td>
<td>Main (DBNOx)</td>
<td>J5</td>
<td>Yellow/Purple/Green/Black</td>
</tr>
<tr>
<td>Power Jumper</td>
<td>Main (DBNOx)</td>
<td>J1</td>
<td>Black/Black</td>
</tr>
<tr>
<td>NO<sub>2</sub> Analog Output</td>
<td>Main (DBNOx)</td>
<td>J7</td>
<td>White/Black</td>
</tr>
<tr>
<td>On/Off Switch</td>
<td>Power</td>
<td>J1</td>
<td>Black/Black</td>
</tr>
<tr>
<td>Line In</td>
<td>Power</td>
<td>J4</td>
<td>Red/Black</td>
</tr>
<tr>
<td>Power Out</td>
<td>Power</td>
<td>J5</td>
<td>Red/Black</td>
</tr>
<tr>
<td>Sample Pump</td>
<td>Power</td>
<td>J6</td>
<td>Red/Blue</td>
</tr>
<tr>
<td>Relay Control In (Heater)</td>
<td>Power</td>
<td>J9</td>
<td>Blue/Black</td>
</tr>
<tr>
<td>Heater</td>
<td>Power</td>
<td>J10</td>
<td>White/White</td>
</tr>
<tr>
<td>LED</td>
<td>LED Driver</td>
<td>J1</td>
<td>Purple/White</td>
</tr>
<tr>
<td>Power In</td>
<td>LED Driver</td>
<td>J2</td>
<td>Purple/White</td>
</tr>
</tbody>
</table>
12. **SPARE PARTS**

The following list includes those parts of the Model 405 nm NO₂/NO/NOₓ Monitor that are user serviceable.

Please see the 2B Technologies website for a full and updated list of parts and pricing for the Model 405 nm: [http://twobtech.com.parts-online.html](http://twobtech.com/parts-online.html)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOXPUMP405</td>
<td>Sample pump</td>
</tr>
<tr>
<td>NOXVLV405</td>
<td>NOx solenoid valve (the Model 405 uses 3 of these)</td>
</tr>
<tr>
<td>OZVLV405</td>
<td>Ozone solenoid valve (the Model 405 uses 2 of these)</td>
</tr>
<tr>
<td>NOXDSP405</td>
<td>4-line LCD display and cable</td>
</tr>
<tr>
<td>LEDASSEMBLY405</td>
<td>LED assembly</td>
</tr>
<tr>
<td>PDASSEMBLY405</td>
<td>Photodiode assembly and cable</td>
</tr>
<tr>
<td>NOXBRD405</td>
<td>DBNOx printed circuit board</td>
</tr>
<tr>
<td>SCRBOZINT405</td>
<td>Ozone scrubber for ozone generator inlet</td>
</tr>
<tr>
<td>SCRBEHST405</td>
<td>Exhaust scrubbers (two in series)</td>
</tr>
<tr>
<td>DEW</td>
<td>DewLine™ (Nafion tubing)</td>
</tr>
<tr>
<td>SERCABL</td>
<td>Serial port cable, straight-through, female-to-female (to computer)</td>
</tr>
<tr>
<td>CIGADAP</td>
<td>12 V DC cigarette lighter adapter</td>
</tr>
<tr>
<td>SDCARD</td>
<td>SD card (thin profile recommended for the Model 405 Monitor)</td>
</tr>
<tr>
<td>SREADER</td>
<td>SD card reader</td>
</tr>
<tr>
<td>TEFTYG25</td>
<td>Teflon-lined Tygon® tubing (25 ft)</td>
</tr>
<tr>
<td>TEFTYG05</td>
<td>Teflon-lined Tygon® tubing (5 ft)</td>
</tr>
<tr>
<td>SILTUB05</td>
<td>Silicone tubing (5 ft)</td>
</tr>
</tbody>
</table>
13. SERVICE LOG

<table>
<thead>
<tr>
<th>Date</th>
<th>Calibrated</th>
<th>Cleaned</th>
<th>New NO<sub>x</sub> Scrubber</th>
<th>New Pump</th>
<th>New LED</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A: Using the 2B Technologies Display and Graphing Software

Copyright© 2B Technologies, Inc. All rights reserved

Introduction

2B Data Display is an easy way to display and save data from your serial or USB connection.

With easy one-click operations, data are read from your instrument and displayed on an extremely versatile chart. Two items, such as Ozone and Temperature, can be displayed simultaneously on the chart with multiple zoom levels. Data are automatically saved to a .txt file and can optionally be saved to a .CSV file to be read in Excel. Saved data can be restored for later viewing and analyzing on the chart. By requesting an account with 2B Technologies, you can upload your data and view it on a Google Earth overlay.

Downloading the Software

Go to http://twobtech.com/downloads.html and select the Software tab. Click the link for “2B Tech Display and Download Software.” Follow the instructions, doing the two installations if needed and choosing to save the “setup.exe” file. Double-click the setup.exe download to launch the 2B Data Display application.

Connecting Devices

Connect to a 2B Technologies Monitor

1. Select the device you are connecting to from Settings: Select Device...
2. Click OK.
3. Select the Connection you will be using from Settings: Connection...
 Choose the settings as follows:
 a) Port:
 • The default port is “COM1” for computers with a serial port.
 • If using a USB connection, check for the correct port in the “Device Manager” under “Ports” located in: Control Panel : System : Device Manager.
 • If using a USB to Serial adapter, check for the correct port the same as for a USB connection and look for the name of the adapter (e.g., Belkin, Prolific, or other USB to Serial adapter manufacturers).
 b) Baud Rate: The Default baud rate is 2400. Check your Monitor’s settings in the “Cfg / I/O” menu and match the software with the monitor’s setting. Note that for the USB port of a Monitor, the baud rate must match the baud rate of the Monitor at the Monitor’s startup.
 c) Parity: None
 d) Data Bits: 8
4. Click Start button in the Instrument Data Capture section in the upper left corner of the main screen.
 a) The “Save As” window will appear. A default file name will appear which is made of the date and time. You may change the filename and change where it is saved if you wish.
 b) Click the “Save” button. This will start the data capture software and data will fill into the chart as they are transmitted from the device.
 c) The red OFF text will change to green ON text. The text: Waiting for data… will appear until data arrives from the instrument. If the instrument measurement frequency is set to 2 seconds, for example, you will see a data point every 2 seconds. Averaging frequencies can be set to different values in the Avg submenu on the instrument.

Connect to Weather Station (Davis Vantage Pro)

1. Be sure the weather station is physically connected to the USB port or Serial port of the computer.
2. Select the COM port for the weather station from Settings: Weather Connection Settings…
3. Select “Retrieve Weather Data” from the “Weather Link” menu. A window will appear and the software will try to retrieve the weather station data. If the connection is good, weather data will be displayed in the window. If not, an error message will appear. Try a different com port if the error message appears. You may move this window so it is out of the way or you may close it. The weather data is updated every 5 seconds.
 - Since the Monitor and the Weather Station both use COM ports, you may have to unplug one of the USB adapters from the PC to determine which device is using which COM port.
4. To bring up the window again if you have closed it, select “Display Weather Data.”

Viewing Data

The Data Grid Tab

1. Make sure the application is connected to a device or that you have opened a previously saved data file.
2. Click the Data Grid tab on the right side of the screen.
3. The data lines received from your instrument will be listed in a grid with the latest point at the top.
4. The header contains the device specific variables (e.g., Ozone, Cell Temp…). Log Number is always listed even if your instrument is not set to log.

The Charts Tab

1. Make sure the application is connected to a device or you have opened a previously saved data file.
2. Click the Charts tab on the right side of the screen.
3. Select which data items to display from the drop down windows “Data 1” and “Data 2.”
4. The data points will appear in a graph window in the middle of the screen.
5. Adjust the zoom level by pressing the + or – buttons under the *Settings* button (upper right side of screen).

6. Adjust the Y scale or set the *Auto Range* feature by pressing the *Settings* button
 a. Check the *Auto Range* box to use autoscaling
 b. Uncheck the *Auto Range* box to manually set Y max and Y min for the Data 1 and Data 2 fields.

The Buffer Tab
- Selecting the Buffer tab brings up a buffer window, similar to Tera Term or HyperTerminal, where all data from the serial port are displayed.
- From this tab, the user can also send commands through the serial port by typing on the keyboard. This is only applicable if the device that is connected accepts serial commands.
- This buffer window can also be used for troubleshooting for instances when: the baud rate, device, or serial port is unknown. For example, if the status bar in the “Instrument Data Capture area states “Receiving…” and no data appear in the Data Grid or the Charts, click on the Buffer tab to view the serial data. If the correct device is not selected, no data will be displayed in the Data Grid or the Charts, but data will be displayed in the Buffer window.

Saving Data

Saving Data to a .txt File
1. Click the *Start* button in the Instrument Data Section to begin collecting data from the instrument.
2. A window will pop up to prompt for the name and location of the file.
3. Click Save to begin the data collection.
4. All data read from the ozone monitor through the COM port are written to the .txt file in real time until *Stop* is clicked.

Saving Data to a .CSV or an Excel File

NOTE: Weather data are NOT saved to the .txt file. In order to save weather data, be sure to save a .CSV file after *Stop* is clicked.
1. After collecting data, click the *Stop* button in the Instrument Data Capture Section on the main screen.
2. A window will pop up to ask you if you would like to save to a CSV file as well. Click Yes.
3. A default name appears from the date and time of the data capture. You may change the name and path of the file if you wish.
4. Click on the *Save* button.

Opening Files
1. To open a file, click *Open* from the *File* menu.
2. Navigate to the folder where the file was stored.
3. Select either the .txt file or the excel file and press *Open*.
 1. **NOTE:** To view weather data, you must open the corresponding .CSV file.
4. Choose the correct device associated with the file.
a. If you are unsure, open the file in a text editor or Excel to determine which device.

Serial Commands

The menu commands are the same as given elsewhere in this manual.