
Model 106L Ozone Monitor
16. Ozone Treatment Improves the Texture of Strawberry Fruit during Storage, T. Pichowiak, D. Migut, R. Józelczyk and M. Balasewkdjer, Antioxidants (2022) 11, 5, 821. MDPI Link

Model 106-MH or Model 106-H Ozone Monitors

Model 202 Ozone Monitor
30. Possible Effects of Ozone Chemistry on the Phase Behavior of Skin Oil and Cooking Oil Films and Particles Indoors, S. Xu, F. Mahret, F.K.A. Gregson and A.K. Bertram, ACS Earth Space Chemistry (2022) 6, 7, 1836-1845. ACS Link

Model 205 Ozone Monitor

Personal Ozone Monitor (POM)

Vertical Evolution of Black and Brown Carbon during Pollution Events over North China Plain, Q. Wang, L. Wang, C. Gong, M. Li, J. Xin, G. Tang, Y. Sun, J. Gao, Y. Wang, S. Wu, Y. Kang, Y. Yang, T. Li, J. Liu and Y. Wang, Science of the Total Environment (2022) 806, 4, 150950. ScienceDirect

Model UV-106-W Aqueous Ozone Monitor

Model 405 ppm NO2/NO Monitor

Model 410:401

Multiple 2B Tech Instruments Used (models noted at end of citation)

Model 306 Ozone Calibration Source

Model 714 NO/NO₂ Calibration Source

79. Skin Volatile Organic Compound Emissions from 14 Healthy Young Adults under Controlled Conditions, Z. Zou and X. Yang, Building and Environment (2022) 222, 109416. ScienceDirect

80. Simultaneous Removal of SO₂ and NO by O₃ Oxidation Combined with Seawater as Absorbent, Y. Wang, G. Zhang and J. Su, Processes 10, 8, 1449. MDPI Link

81. Follow-Up Research on Simultaneous Removal of NO and SO₂ by Wet Scrubbing NaClO Solution Combined In Situ with Ozone Oxidation: Performance and Mechanism, J. Cheng, Z. Han, J. Li and X. Pan, Industrial & Engineering Chemistry Research (2022) 61, 43, 15766-15777. ACS Link

2021 (sorted by model number of the 2B Tech instrument used)

Model 106L Ozone Monitor

5. Exploring an Efficient Manganese Oxide Catalyst for Ozone Decomposition and Its Deactivation Induced by Water Vapor, C. Fang, D. Li, X. Wang, Y. Wang, J. Chen and M. Luo, New Journal of Chemistry (2021) 45, 10402-10408. RSC Link

Model 106-M Ozone Monitor

17. Low-Dosage Ozonation in Gas-Phase Biofilter Promotes Community Diversity and Robustness, M. Yeung, P. Saingam, Y. Xu and J. Xi, Microbiome (2021) 9, 14. SpringerLink

21. Effect of Ozone Treatment on Glutathione (GSH) Status in Selected Berry Fruit, T. Piechowiak, Phytochemistry (2021) 167, 112767. ScienceDirect

23. Effect of Inkjet-Printed Flexible Dielectric Barrier Discharge Plasma on Reduction of Pathogen and Quality Changes on Sliced Cheese, Y.S. Heo, D.G. Yim, K.H. Baek, T. Kang, Y.E. Lee, J. Kim, W. Choe and C. Jo, LWT - Food Science and Technology (2021) 143, 111128. ScienceDirect

29. Effects of Dielectric Barrier Discharge Plasma on Physico-Chemical and Microbiological Properties of Sliced Cheese and Functional Property of Egg White Protein, Y.S. Heo, Master’s Thesis (2021), Seoul National University, 92 pp. SNU Link

Model 106-MH or Model 106-H Ozone Monitors

Link to Citations on Google Scholar

Link to Citations on 2B Tech Website

Model 202 Ozone Monitor

Model 205 Ozone Monitor

64. What the COVID-19 Lockdown Revealed about Photochemistry and Ozone Production in Quito, Ecuador, M. Cazorla, E. Herrera, E. Palomeque and N. Saut, Atmospheric Pollution Research (2021) 12, 1, 124-133. [ScienceDirect]

78. Sources and Characterization of Ozone and Submicron Aerosol in San Antonio, Texas, F. Guo, Ph.D. Thesis (2021), Rice University, 147 pp. RiceUniversity Link

81. Tracing Surface and Airborne SARS-CoV-2 RNA Inside Public Buses and Subway Trains, T. Moreno, R.M. Pinto, A. Bosch, N. Moreno, A. Alastuey, M.C. Mingulión, E. Anfruns-Estrada, S. Guix, C. Fuentes, G. Buonanno, L. Stabile, L. Morawka and X. Querol, Environment International (2021) 147, 106326. ScienceDirect

Link to Citations on Google Scholar Link to Citations on 2B Tech Website

86. Understanding the Local and Remote Source Contributions to Ambient O₃ during a Pollution Episode Using a Combination of Experimental Approaches in the Guadalquivir Valley, Southern Spain, M. in ’t Veld, C. Carnerero, J. Massagué, A. Alastuey, J. Hernández, J. Santamaría, M. Millán and X. Querol, Science of the Total Environment (2021) 777, 144579. ScienceDirect

90. Air Quality Monitoring Using an Environmental Drone, M. Hayasaki, JARI Research Journal (2021), 20211001, 14 pp. 2BTechLink

Model 211 Scrubberless Ozone Monitor

Model 405 nm NO₂/NO/NO₂ Monitor

Model 300 Ozone Calibration Source

Model 714 NOx/NO2 Calibration Source

107. NOx and CO Fluctuations in a Busy Street Canyon, P. Brimblecombe, M.-Y. Chu, C.-H. Liu and Z. Ning, Environments (2021) 8, 12, 137. [MDPI Link]

Personal Air Monitor

108. Winter and Spring Air Quality in Amager, DK with Focus on Spatial and Timely Distribution of Ultrafine Particles, M. del Pilar Contreras, Report for the Department of Environmental Engineering, Technical University of Denmark (2021), 79 pp. [2BTech link]

Multiple 2B Tech Instruments Used (models noted at end of citation)

Ozone or NOx Monitor (Model not specified in paper)

131. Synergistic Effects of a Combination of Vacuum Ultraviolet-Induced Oxidation and Wet Absorption Process on Removal of Nitric Oxide at Room Temperature, Y. Gan, J.Ji, K. Li, W. Dai, L. Ye, M. He, D. Xia, Z. Xie, S. Luo, Y. Cao, W. Liang and H. Huang, Journal of Environmental Engineering (2021) 147, 10, 04021040. [ASCE Link] [zone 106]

132. Selective ppb-Level Ozone Gas Sensor Based on Hierarchical Branch-Like In$_2$O$_3$ Nanostructure, N. Sui, P. Zhang, T. Zhou and T. Zhang, Sensors and Actuators B: Chemical (2021) 336, 126912. [ScienceDirect] [zone]

2020 (sorted by model number of the 2B Tech instrument used)

Model 106L Ozone Monitor

Model 106-M Ozone Monitor

10. Ozone Treatment Induces Changes in Antioxidative Defense System in Blueberry Fruit during Storage, T. Piechowiak, B. Skóra and M. Balawejder, Food and Bioprocess Technology (2020) 13, 1240-1245. [SpringerLink]

Model 106 MH or Model 106 Hi Ozone Monitors

Model 202 Ozone Monitor

35. Flux-Based Ozone Risk Assessment for a Plant Injury Index (PfII) in Three European Cool Temperate Deciduous Tree Species, Y. Hoshika, E. Carrari, B. Mariotti, S. Martini, A. De Marco, P. Sicard and E. Paoletti, Forests (2020) 11 (1), 82. MDPI link

48. Evidence that Criegee Intermediates Drive Autoxidation in Unsaturated Lipids, M. Zeng, N. Heine and K.R. Wilson, Proceedings of the National Academy of Sciences (2020) 117, 9, 4486-4490. PNAS Link

Model 205 Ozone Monitor

64. Ozone Pollution in the West China Rain Zone and Its Adjacent Regions, Southwestern China: Concentrations, Ecological Risk, and Sources, Y. Cao, X. Qiao, P.K. Hopke, Q. Ying, Y. Zhang, Y. Zeng, Y. Yuan and Y. Tang, Osmosphere (2020) 256, 127008. ScienceDirect

Link to Citations on Google Scholar
Link to Citations on 2B Tech Website
66. Comparison of Ozone Fluxes over a Maize Field Measured with Gradient Methods and the Eddy Covariance Technique, Z. Zhu, X. Tang and F. Zhao, Advances in Atmospheric Sciences (2020) 37, 586-596. SpringerLink

70. Measurement of Ozone Deposition Velocity onto Human Surfaces of Chinese Residents and Estimation of Corresponding Production of Oxidation Products, M. Yao, L. Ke, Y. Liu, Z. Luo and B. Zhao, Environmental Pollution (2020) 266, 3, 115215. ScienceDirect

Personal Ozone Monitor (POM)

82. Development of Methodologies for the Use and Application of Air Quality Sensors to Enable Community Air Monitoring, B.J. Feenstra, Ph.D. Thesis (2020), University of California Riverside, 185 pp. eScholarship

87. Quantification of Sources of Variability of Air Pollutant Exposure Concentrations among Selected Transportation Microenvironments, H.C. Frey, D. Gadre, S. Singh and P. Kumar, Transportation Record (2020) 2674. 9, 395-411. SagePubs

Model 211 Scrubberless Ozone Monitor

Model 405 nm NO/NO2 Monitor

Model 410/411

Model 306 Ozone Calibration Source

Multiple 2B Tech Instruments Used (models noted at end of citation)

114. To Promote Ozone Catalytic Decomposition by Fabricating Manganese Vacancies in \(\text{r-MnO}_2 \) Catalyst via Selective Dissolution of \(\text{Mn-Li} \) Precursors, W. Hong, M. Shao, T. Zhu, H. Wang, Y. Sun, F. Shen and X. Li, Applied Catalysis B: Environmental (2020) 274, 119988. ScienceDirect [ozone]

115. Improve Low-Temperature Selective Catalytic Reduction of NO\textsubscript{x} with \(\text{NH}_3 \) by Ozone Injection, M. Liu, J. Li, Z. Liu, Y. Zhao, N. Jiang and Y. Wu, International Journal of Plasma Environmental Science and Technology (2020) 14, e01007. UPEST Link [ozone]

118. A Novel Method for Simultaneous Removal of NO and \(\text{SO}_2 \) from Marine Exhaust Gas via In-Site Combination of Ozone Oxidation and Wet Scrubbing Absorption, Z. Han, T. Zou, J. Wang, J. Dong, Y. Deng and X. Pan, Journal of Marine Science and Engineering (2020) 8, 943. MDPI Link [ozone]

120. The Performance and Reaction Pathway of \(\text{r-MnO}_2/\text{USY} \) for Catalytic Oxidation of Toluene in the Presence of Ozone at Room Temperature, R. Yang, P. Han, Y. Fan, Z. Guo, G. Zhao, Y. Wang, S. Che, S. Lin and R. Zhu, Chemosphere (2020) 247, 125864. ScienceDirect [ozone]

122. NO\textsubscript{x} Removal from Flue Gas Using an Ozone Advanced Oxidation Process with Injection of Low Concentration of Ethanol: Performance and Mechanism, Z. Han, J. Wang, T. Zou, D. Zhao, C. Gao, J. Dong and X. Pan, Energy & Fuels (2020) 34, 2080-2088. ACS Link [ozone]

2019 (sorted by model number of the 2B Tech instrument used)

Model 106L Ozone Monitor

Model 106-M Ozone Monitor

Model 106-MH or Model 106-H Ozone Monitors

Model 202 Ozone Monitor

42. Effect of NOx on 1,3,5-trimethylbenzene (TMB) Oxidation Product Distribution and Particle Formation, E. Tsiligiannis, J. Hammes, C.M. Salvador, T.F. Mentel and M. Halquist, Atmospheric Chemistry and Physics (2019) 19, 15073-15086. ACP Link

54. Cooking/Window Opening and Associated Increases of Indoor PM2.5 and NO2 Concentrations of Children’s Houses in Kaohsiung, Taiwan, Y.-C. Yen, C.-Y. Yang, K.D. Mena, Y.-T. Cheng and P.-S. Chen, Applied Sciences (2019) 9(20), 4306. MDPI Link

57. Analysing the Impact Climate Has on the Emissions of BVOCs and the Formation of Tropospheric Ozone, B. De Grandis, Master’s Thesis (2019), University of Gothenburg, 61 pp. GUI Link

Model 205 Ozone Monitor

62. Effects of Environmental Factors on Ozone Flux over a Wheat Field Modeled with an Artificial Neural Network, Z. Zhu, Advances in Meteorology (2019), Article ID 1257910, 11 pp. Hindawi link

82. Vertical Characteristics of Winter Ozone Distribution within the Boundary Layer in Shanghai Based on Hexacopter Unmanned Aerial Vehicle Platform, Q. Chen, D. Wang, X. Li, B. Li, R. Song, H. He and Z. Peng, Sustainability (2019) 11(24), 7026. MDPI Link

Model 211 Scrubberless Ozone Monitor

Ozone or NO2 Monitor (Model not specified in paper)

93. Can Needle Nitrogen Content Explain the Interspecific Difference in Ozone Sensitivities of Photosynthesis between Japanese Larch (Larix kaempferi) and Sahkmal Fr (Abies sachalinensis)? T. Sugai, M. Kitao, T. Watanabe and T. Koike, Photosynthetica (2019) 57, 540-547. [PS Link]

96. The Effects of Elevated CO2 and Elevated O3 Exposure on Plant Growth, Yield and Quality of Grains of Two Wheat Cultivars Grown in North India, A. Yadav, A. Bhatia, S. Yadav, V. Kumar and B. Singh, Heliyon (2019) 5, e02317. [ScienceDirect]

Model 405 nm NOx/NO, Monitor

Model 401/410 NO

Model 306 Ozone Calibration Source

107. pH-Dependent Production of Molecular Chlorine, Bromine, and Iodine from Frozen Saline Surfaces, J.W. Hallock, P.B. Shepson and K.A. Pratt, *Atmospheric Chemistry and Physics (2019)* 19, 4917-4931. [ACP Link](https://www.atmos-chem-phys.net/19/4917/2019/)

Multiple 2B Tech Instruments Used (models noted at end of citation)

Link to Citations on 2B Tech Website

41. Airborne Data Visualizer, Oak Ridge National Laboratory, Distributed Active Archive Center (ORNL DAAC), Oak Ridge, Tennessee, USA (2018) [dataset documentation](https://doi.org/10.3334/ORNLDAAC/1585).

47. Structural Manipulation of Manganese Oxides for Enhanced Catalytic Decomposition of Ozone, J. Ji, S. Liu, Y. Yu and H. Huang, 8th Tokyo Conference on Advanced Catalytic Science and Technology (TOCAT8), 5-10 August 2018, Yokohama, Japan, OC009, 2 pp. [TOCAT8 Link](https://www2btech.com/)

59. Tuning the K+ Concentration in the Tunnels of α-MnO\textsubscript{2} to Increase the Content of Oxygen Vacuum for Ozone Elimination, G. Zhu, J. Zhu, W. Li, W. Yao, R. Zong, Y. Zhu and Q. Zhang, Environmental Science & Technology (2018) 52, 8684-8692. ACS Link

101. Examination of the Photochemistry and Mesoscale Meteorology Associated with Poor Air Quality in the U.S.. G.M. Mazzuca, Ph.D. Thesis (2018), University of Maryland, 197 pp. UMD Link

[Link to Citations on Google Scholar](#) [Link to Citations on 2B Tech Website](#)
126. Atmospheric Chemistry of Stir-Frying Emissions, Y. Gu, Masters Thesis (2018), University of California Riverside, 48 pp. eScholarship
131. A Comparative Study Characterizing Traffic Related Air Pollutant Concentration at Near-Road Communities in El Paso, Texas, A. Rangel, Master’s Thesis (2018), University of Texas at El Paso, 58 pp. Digital Commons link
132. Relationship of Fine and Superfine Particulate Matter with Precursors and Meteorological Conditions at an Educational Institution in Delhi, T. Garg, Master’s Thesis (2018), Delhi Technological University, 76 pp. DSpace DTU link
133. Factors Influencing Surface Ozone Variability over Continental South Africa and Implications for Air Quality and Agriculture, T.L. Laban, Ph.D. Thesis (2018), North-West University, South Africa, 226 pp. 2B Tech Link

2017

3. The Wetting Behavior of Fresh and Aged Soot Studied through Contact Angle Measurements, Y. Wei, Q. Zhang and J.E. Thompson, Atmospheric and Climate Sciences (2017) 7, 11-22. ScientificResearchPublishing

Link to Citations on Google Scholar Link to Citations on 2B Tech Website

63. Design and Development of a Self-Contained Personal Electrostatic Aerosol Sampler (PEBS) with a Wire-to-Wire Charger, T.T. Han, N.M. Thomas and G. Mainelis, Aerosol Science and Technology (2017) 51 (8), 903-915. [Taylor&Francis Link]

73. Human Exposure Assessment for Air Pollution, B. Han, L.W. Hu and Z. Bai, in G.H. Dong (eds), Ambient Air Pollution and Health Impact in China (2017), Advances in Experimental Medicine and Biology, 1017, 27-57, Springer, Singapore. [SpringerLink]

89. Ozone Activated Cool Diffusion Flames of Butane Isomers in a Counterflow Facility, A.A.Al Omier, Mas University (2017) 1258.
92. Connecting the Elementary Reaction Pathways of Criegee Intermediates to the Chemical Erosion of Squalene Interfaces during Ozonolysis, N. Heine, F.A. Houle and K.R. Wilson, Environmental Science & Technology (2017) 51 (23), 13740-13748. ACS Link

2016

15. Attribution of Atmospheric Sulfur Dioxide over the English Channel to Dimethyl Sulfide and Changing Ship Emissions, M. Yang, T.G. Bell, F.E. Hopkins and T.J. Smyth, Atmospheric Chemistry and Physics (2016) 16, 4771-4783. link

Link to Citations on Google Scholar
Link to Citations on 2B Tech Website

47. Removal of NO in Mist by the Combination of Plasma Oxidation and Chemical Absorption, D. Xie, Y. Sun, T. Zhu and L. Ding, Energy and Fuels (2016) 30 (6), 5071-5076, doi:10.1021/acs.energyfuels.6b00483. *ACS Link*

49. Human Responses to Carbon Dioxide, a Follow-up Study at Recommended Exposure Limits in Non-industrial Environments, X. Zhang, P. Wanggoki and Z. Lian, Building and Environment (2016) 100, 162-171. *ScienceDirect*

70. Investigating Feedbacks from Soil Trace Gas Fluxes of Carbon Dioxide and Nitrogen Oxides to Anthropogenic Nitrogen Deposition and Climate Change, J. Eberwein, Ph.D. Thesis, University of California Riverside (2016), 122 pp. [eScholarship](https://escholarship.org/uc/item/29f4d7j5)

72. Studies of Arctic Tropospheric Ozone Depletion Events Through Bouy-Based Observations and Laboratory Studies, J.W. Halfacre, Ph.D. Thesis, Purdue University (2016), 256 pp. [Purdue link](https://purl.lib.purdue.edu/etd/1302)

77. The Experimental Study of Ozone reaction with Indoor VOCs from Pinewood and Its Secondary Ultrafine Particle Pollution, R. Chen, J. Pei and J. Liu, International Society of Indoor Air Quality and Climate (ISIAQ) Proceedings of the 14th International Conference on Indoor Air Quality and Climate (2016), 3-8 July 2016, Ghent, Belgium, paper 480, pp. 1009-1016. [PDF at 2B Tech Archive](https://www.twobtech.com/)

79. The Photoenhanced Aging Process of Soot by the Heterogeneous Ozonization Reaction, C. Han, Y. Liu and H. He, *Physical Chemistry Chemical Physics* (2016) 18, 24401-24407. [RSC Link](https://pubs.rsc.org/en/content/articlelanding/2016/cc/c6cc05353a)

85. In Vitro Toxicological Evaluation of Airborne Copper-Based Nanoparticles, E. Burns, Master’s Thesis (2016), Dalhousie University, 97 pp. [DalhousieLink]

2015

22. Design and Evaluation of the Field-Deployable Electrostatic Precipitator with Superhydrophobic Surface (FDEPSS) with High Concentration Rate, Taewon Han, Huajun Zhen, Donna E. Fennell and Gediminas Mainelis, Aerosol and Air Quality Research (2015) 15, 2397-2408. [PDF at Research Gate]

29. Growth Overcompensation Against O₃ Exposure in Two Japanese Oak Species, Quercus mongolica var. crispula and Quercus serrata, Grown under Elevated CO₂, Mitsutoshi Kitao, Masabumi Komatsu, Kenichi Yazaki, Satoshi Kitaoka and Hirokiyto Tobita, Environmental Pollution (2015) 206, 133-141. ResearchGate

36. The Effects of Mn²⁺ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts, Caixia Wang, Jinzhu Ma, Fudong Liu, Hong He and Runduo Zhang, J. Phys Chem

doi:10.1038/ncomms9753, Nature Communications

51. Spatial Variation of Aerosol Composition and Organic Components Identified by Positive Matrix Factorization in the Barcelona Region, Claudia Mohr, Peter F. DeCarlo, Maarten F. Herina, Roberto Chirico, René Richter, Monica Crippa, Xavier Querol, Urs Baltensperger and André S. H. Prévôt, Environmental Science and Technology (2015) 49, 10421-10430. ES&T

55. Capítulo 4, Aplicaciones al Control de Calidad del Aire (Chapter 4, Applications to Air Quality Control), Agustin Ezcurra Talegón and Lorenzo Díaz de Apodaca; In Los Drones y sus Aplicaciones a la Ingeniería Civil (Drones and Applications in Civil Engineering), Madrid, (2015). PDF

61. Responses of Mustard (Brassica campestris) and Rice (Oryza sativa) Cultivars to Tropospheric Ozone in India, Results from EDU Treatments, Ashutosh Kumar Pandey, Ph.D. Thesis, University of Eastern Finland (2015). UEF

84. Ozone Concentration in Two Experimental Sites in the Metropolitan Region of Manaus: Conventional Measurements and Remote Estimates, P.S. Costa, Ph.D. Thesis (2015), Climate and Environment (CLIAMB), National Research Institute of the Amazon (INPA), 105 pp. INPA link

87. Comparative Proteomic Analysis Reveals the Role of Hydrogen Sulfide in the Adaptation of the Alpine Plant Lamiothamis rotata to Altitude Gradient in the Northern Tibetan Plateau, Lan Ma, Liming Yang, Jingjie Zhao, Jingjing Wei, Xiangxiang Kong, Chuntao Wang, Xiaoming Zhang, Yongping Yang and Xiangyang Hu, Planta (2015) 241 (4), 887-906. Springer Link PDF at Research Gate

88. Potential of Ozone Technology for German Cockroach (Blattella germanica (L.)) Management, Y. Tian, Master’s Thesis, Purdue University (2015), 50 pp. Purdue Link

91. Studies of Arctic Halogen Chemistry from the Snowpack to the Gas Phase, K.D. Custard, Ph.D. Thesis, Purdue University (2015), 250 pp. Purdue link

52

2014

3. Perchlorate Content of Plant Foliage Reflects a Wide Range of Species-Dependent Accumulation but not Ozone-Induced Biosynthesis, D. A. Grantz, K. O. Burkey, W. A. Jackson, H. -B. Vu, M.T. McGrath and G. Harvey, Environmental Pollution (2014) 184, 690-696. ScienceDirect

4. Canopy Carbon Budget of Siebold’s Beech (Fagus crenata) Sapling under Free Air Ozone Exposure, Makoto Watanabe, Yasutomo Hoshika, Naoki Inada and Takayoshi Kikue, Environmental Pollution (2014) 184, 685-689. ScienceDirect

5. Seasonal Ozone Uptake by a Warm-Temperate Mixed Deciduous and Evergreen Broadleaf Forest in Western Japan Estimated by the Penman-Monteith Approach Combined with a Photosynthesis-dependent Stomatal Model, Mitsutoshi Kitao, Masahumi
Komatsu, Yasutomo Hoshika, Kenichi Yazaki, Kenichi Yoshimura, Saori Fuji, Takafumi Miyama and Yuji Kominami, *Environmental Pollution*(2014) 184, 457-463. *PDF at Science Direct*

18. Decreasing Effect and Mechanism of FeSO4 Seed Particles on Secondary Organic Aerosol in α-Pine Photooxidation, Biwu Chu, Yongchun Liu, Junhua Li, hideto Takekawa, John Liggio, Shao-Meng Li, Jingkun Jiang, Jiming Hao and Hong He, *Environmental Pollution* (2014) 193, 88-93. *ScienceDirect*

21. Fluorescence Spectra and Biological Activity of Aerosolized Bacillus Spores and MS2 Bacteriophage Exposed to Ozone at Different Relative Humidities in a Rotating Drum, Shanna Ratnesar-Shumate, Yong-Le Pan, Steven C. Hill, Sean Kinahan, Elizabeth Corson,

27. Design and Implementation of a High-Frequency LC-Based Half-Bridge Resonant Converter for Dielectric Barrier Discharge Ozone Generator, Muhammad Arjnad and Zainal Salam, IET Power Electronics (2014) 7, 2403-2411. [IEEE Xplore]

34. Laboratory comparison of relative performance of gas phase filtration media at high and low O3:NOx challenge concentrations [ASHRAE RP-1557], KwangHoon Han, Jensen S. Zhang, Bing Guo and Chuan He, HVAC&R Research (2014) 20, 522-531. [HVAC&R Research PDF at ResearchGate.net]

38. Quantitative Constraints on the 17O-excess (17O) Signature of Surface Ozone: Ambient Measurements from 50° N to 50° S Using the Nitrite-Coated Filter Technique, William C. Vicars and Joël Savarino, Geochimica et Cosmochimica Acta (2014) 135, 270-287. [PDF at ResearchGate.net ScienceDirect]

53. The First One Year Measurements at the Monte Portella (Italy) Climate High Altitude Station, Eleonora Aruffo, Piero Di Carlo, Alfonso D’Altorio, Marcella Busilacchio, Fabio Biancofiore, Franco Giannamaria, Francesco Del Grande, Paolo Bonasoni, Paolo Cristofarel1 and Elisa Vuillermoz, EGU General Assembly Conference Abstracts (2014) 16, 5656. SGONASA/ADS Physics Abstract Service PDF

64. Diurnal Variation of Ozone Flux over Corn Field in Northwestern Shandong Plain of China, ZhiLin Zhu, XiaoMin Sun, YunShe Dong, FengHua Zhao, Franz X. Meixner, Science China Earth Sciences (2014) 57, 503-511. Springer Link

58. Contribution of Sources and Sinks to the Photochemistry of the Present and Past Atmosphere of West Antarctica Based on Air, Snow and Ice-Core Records, Sylvain Mascilin, Ph.D. Thesis, University of California, Merced (2014). PDF on eScholarship

70. Field Performance Test of an Air-Cleaner with Photocatalysis-Plasma Synergistic Reactors for Practical and Long-Term Use, Tsuyoshi Ochiai, Erina Ichihashi, Naoki Nishida, Tadashi Machida, Yoshitsugu Uchida, Yuji Hayashi, Yuko Morito and Akira Fujishima, Molecules (2014) 11, 17424-17434. MDPI.

90. Filtration of Ultraline Particles from Tobacco Smoke Using an Ionizer in Combination with an Electrostatic Fibrous Filter, A. Afshari, N.C. Bergsoe and S.R. Ardakani, 13th International Conference on Indoor Air Quality and Climate, Topic BS: Filtration and Air Cleaning, 7 July – 12 July (2014), Hong Kong, 553-557. IIAQLink.

2013

12. Both Ozone Exposure and Soil Water Stress are Able to Induce Stomatal Sluggishness, Yasutomo Hoshika, Kenji Omasa and Elena Paeletti, Environmental and Experimental Botany (2013) 88, 19-23. ScienceDirect PDF at u-tokyo.ac.jp

18. Photosynthetic Response of Early and Late Leaves of White Birch (Betula platyphylla var. japonica) Grown under Free-Air Ozone Exposure, Yasutomo Hoshika, Makoto Watanabe, Naoki Inada, Qiaozhi Mao, Takayoshi Koike, Environmental Pollution (2013) 182 242-247. ScienceDirect PDF at hokudai.ac.jp

21. Photosynthetic Traits of Siebold's Beech and Oak Saplings Grown under Free Air Ozone Exposure in Northern Japan, Makoto Watanabe, Yasutomo Hoshika, Naoki Inada, Xiaona Wang, Qiaozhi Mao and Takayoshi Koike, Environmental Pollution (2013) 174, 50-56. ScienceDirect PDF at hokudai.ac.jp

26. Homogeneous and Heterogeneous Reactions of Anthracene with Selected Atmospheric Oxidants, Yang Zhang, Jinian Shu, YuanRui Zhang, Bo Yang, Journal of Environmental Sciences (2013) 25, 1817-1823. PDF at ScienceDirect

27. Impact of Cement Renders on Airborne Ozone and Carbon Dioxide Concentrations, Sarah C. Taylor-Lange, Maria C. G. Juenger and Jeffrey A. Siegel, Atmospheric Environment (2013) 70, 263-266. ScienceDirect
28. Effects of Ozone on Crops in North-West Pakistan, Muhammad Nauman Ahmad, Patrick Büker, Sofia Khalid, Leon Van Den Berg, Hamid Ullah Shah, Abdul Wahid, Lisa Emberson, Sally A. Power, Mike Ashmore, Environmental Pollution (2013) 174, 244-249. ScienceDirect

29. Why Lichens are Bad Biomonitor of Ozone Pollution?, Stefano Bertuzzi, Linda Davies, Sally A. Power and Mauro Tretiach, Ecological Indicators (2013) 34, 391-397. ScienceDirect

33. Comparative Proteome Analyses Reveal that Nitric Oxide is an Important Signal Molecule in the Response of Rice to Aluminum Toxicity, Liming Yang, Dagnañg Tran, Christopher D. Todd, Yuming Luo and Xiangyang Hu, Journal of Proteome Research (2013) 12, 1316-1330. pubs.acs.org

42. Ozonometer Based on Metal-Oxide Sensors and Its Graduation, A. A. Aliev, T. I. Nizamov and E. I. Isaev, КОНСТРУИРОВАНИЕ И ТЕХНОЛОГИЯ: Design and Technology/Технология (2013) No. 4, 37 PDF at vestnikpb.bmstu.ru PDF at vestnikpb.bmstu.ru

54. An Exploratory Analysis of Textile Fabric Soil Content through Ozone Reaction, Shamini Rajaganesh, Master’s Thesis (2013) University of Texas, Austin. utexas.edu

56. The Aging of Organic Aerosol in the Atmosphere: Chemical Transformations by Heterogeneous Oxidation, Sean Herbert Kessler, Ph.D. Thesis (2013) Massachusetts Institute of Technology. [DSpace@MIT](https://dspace.mit.edu/handle/1721.1/80403)

57. Ozone Transport to and Removal in Porous Materials with Applications for Low-Energy Indoor Air Purification, Elliott Tyler Gall, Ph.D. Thesis (2013) University of Texas, Austin. utexas.edu

58. The Use of Selective Materials to Reduce Human Exposure to Ozone and Oxides of Nitrogen, Clément Cros, Ph.D. Thesis (2013) University of Texas, Austin. [UT Repository](https://repositories.lib.utexas.edu/)

70. Vertical and Horizontal Measurements of Ambient Ozone over a Gas and Oil Production Area using a UAV Platform, A. Jensen, I. Gowing and R.S. Martin, American Geophysical Union, Fall Meeting 2013, Abstract #A53A-0148. [SAO/NASA ADS Physics Abstract Service]

94. Heterogeneous Photochemical Aging of Soot by NOx under Simulated Sunlight, C. Han, Y. Liu and H. He, Atmospheric Environment (2013) 64. 270-276. ScienceDirect

2012

6. Heterogeneous Ozonolysis of Pririnincarb and Isopropalin: Mechanism of Ozone-Induced N-Dealkylation and Carboxylation Reactions, Bo Yang, Youfeng Wang, Zheng Wang, Zhiqiang Liu, Xi Shu and Jinian Shu, Environmental Chemistry (2012) 9, 521-528. [CSIRO Publishing]

7. Ozone-Induced Stomatal Sluggishness Develops Progressively in Siebold’s Beech (Fagus crenata), Yasutomo Hoshika, Makoto Watanabe, Naoki Inada, Takayoshi Koike, Environmental Pollution (2012) 166, 152-156. [ScienceDirect]

40. Key Role of Organic Carbon in the Sunlight-Enhanced Atmospheric Aging of Soot by O₃, Chong Han, Yongchun Liu, Jinzhu Ma and Hong He, Proceedings of the National Academy of Sciences of the United States of America (2012) 109, 21250–21255. PNAS PDF at PNAS

43. Controlling Indoor Bioaeronaots Using a Hybrid System of Ozone and Catalysts, Hsiao-Lin Huang, Mei-Guei Lee and Jen-Hsuan Tai, Aerosol and Air Quality Research (2012) 12, 73-82. PDF at cas.co

50. Formalddehyde as a Probe of Rural Volatile Organic Compound Oxidation, Joshua P. DiGangi, Ph.D. Thesis (2012), University of Wisconsin, Madison. PDF at 2B Tech Archive

52. Emission Reduction and Assisted Combustion Strategies for Compression Ignition Engines with Subsequent Testing on a Single-Cylinder Engine, Colter Ragone, Master’s Thesis (2012), University of Kansas, Lawrence, 128 pp. KU ScholarWorks PDF at
ku.edu

64. Mobile Health Sensor for Personal Exposure Assessment, Rui Wang, Ph.D. Thesis, Arizona State University (2012). PDF from
asu.edu

68. La Fluorescenza Clofitelliana Quale Strumento di Indagine nel Campo del Biomonitoraggio Ambientale e del Restauro Dei Monumenti (Chlorophyll Fluorescence as a Survey Tool in the Field of Environmental Biomonitoring and Restoration Of Monuments), Stefano Bertuzzi (2012) Ph.D. Thesis, Università degli Studi di Trieste. [PDF]

73. Toxicological Effects of Nanoparticles from Photocopiers, M. Khatr, Ph.D. Thesis, University of Massachusetts (2012), 187 pp. [ProQuest]

77. Nitrogen and Ozone Pollution: A Threat to Natural Ecosystems, M. Adrees, Ph.D. Thesis, Imperial College London (2012), 202 pp. [Imperial College link]

81. Assessment of Air Quality Based on Past and Ongoing Monitoring Data in FY 12, D. DuBois and E. Ward, Study IId, Report for the Assessment of Land-based Sources of Air Quality Contaminants in the Binational Border Region of Southwestern New Mexico, Northwestern Chihuahua and West Texas (2012), prepared for the Department of Health, Office of Border Health, Las Cruces, New Mexico, 66 pp. [PDF at 2B Tech Archive]

2011

1. Surface Ozone in the White Mountains of California, J. D. Burley and A. Bytnorowicz, Atmospheric Environment 45 (2011) 4591-4602. [Science Direct]

2. Ultrafine Particle Concentrations and Exposures in Seven Residences in Northern California, S. Bhangar, N. A. Mullen, S. V. Hering, N. M. Kreisberg and W. W. Nazaroff, Indoor Air (2011) 21, 132-144. [Wiley Online Library]

3. Laboratory Studies of the Chemical Composition and Cloud Condensation Nuclei (CCN) Activity of Secondary Organic Aerosol (SOA) and Oxidized Primary Organic Aerosol (OPOA), A. T. Lambe, T. B. Onasch, P. Massoli, D. R. Crossdale, J. P. Wright, A. T.

15. Healthy Commuter? Traffic Conditions, Ambient Air Pollution, and Cyclist Exposure, Sarah Jarjour (2011) Spring. PDF at berkeley.edu

23. ZnO Based FilmBulk Acoustic Resonator for Environment Monitoring, Xiaotun Qiu and Hongyu Yu, Micro and Nanosystems (2011) 3, 104-110. IngentaConnect

32. The Development of a Laboratory System to Investigate the Interactions of Tropospheric Aerosol and HOx Radicals, Kathleen Helen Faloof, Ph. D. Thesis (2011) University of Birmingham. eTheses Repository. PDF at bham.ac.uk

36. Ultrtrine Particle Concentrations and Exposures in Six Elementary School Classrooms in Northern California, N. A. Mullen, S. Bhanagar, S. V. Herig, N. M. Kreisberg and W. W. Nazaroff, Indoor Air (2011) 21, 77-87. Wiley Online Library

37. Cadmium Pollution Enhanced Ozone Damage to Winter Wheat: Biochemical and Physiological Evidences, Yong Li, Caihong Li, Yanhai Zheng, Guangli Wu, Tana Wuyun, Hong Xu, Xinhua He, Gaoming Jiang, Journal of Environmental Sciences (2011) 23, 255-265. ScienceDirect

40. Physiological and Biochemical Constraints on Photosynthesis of Leguminous Plants Induced by Elevated Ozone in Open-Top Chambers, Cornelius Coenraad Wilhelm Scheepers, M.S. Thesis, North-West University, Potchefstroom, South Africa (2011). NWU

43. Approche Multicale de la Variabilité Spatiale et Temporelle d’un pic d’Ozone le 30 Juin et le 1er Juillet 2009 dans la Région Parisienne (Multiscale Approach to Spatial and Temporal Variability of Peak Ozone on June 30 and July 1, 2009 in the Paris Region), Sarah Duchê, Nicolas Martin and Malika Madelin, Pollution Atmosphérique (2011) 211. APFA

44. Heterogeneous Ic Nucleation from Laboratory-Generated and Field-Collected Aerosol Particles, Bingbing Wang, Ph.D. Thesis, Stony Brook University (2011), 185 pp. SUNY Digital Repository

6. Ozone Depletion in Tropospheric Volcanic Plumes, A. V. Rosenheimer and Y. Dubowski, ScienceDirect

11. Ozone Monitoring for the Masses, Erika Gebel, Analytical Chemistry (2010) 82, 7864. PDF at pubs.acs.org

15. Heterogeneous Oxidation of Suspended Malathion and Chlorypyrifos Particles, Junwang Meng, Bo Yang, Yang Zhang, Xinyu Dong, Jinian Shu, Chemosphere (2010) 79, 394-400. ScienceDirect

20. Heterogeneous Reactivity of Suspended Pirimiphos-Methyl Particles with Ozone, Bo Yang, Yang Zhang, Junwang Meng, Jie Gan and Jinian Shu, Environmental Science and Technology (2010) 44, 3311-3316. ES&T

28. The Test and Audit of Relative Accuracy Detected by Indoor Air Quality CO, CO2 and O3 Monitoring Devices and Direct Reading Instruments, Chih-Ching Huang, Master's Thesis, National Taipei University of Technology (2010). ArikLibrary

36. Human Exposure to Dynamic Air Pollutants: Ozone in Airplanes and Ultrafine Particles in Homes, Seema Vijay Bhangar, Ph.D. Thesis (2010), University of California, Berkeley. escholarship.org
38. Structural and Hygroscopic Changes of Soot During Heterogeneous Reaction with O3, Y. Liu, C. Liu, J. Ma, Q. Ma and H. He, Physical Chemistry Chemical Physics (2010) 12, 10896-10903. RSC link
41. Ultrafine Particle Concentration in Schoolrooms and Homes, W.W. Nazaroff, S. Bhangar, N.A. Mullen, S.V. Serin and N.M. Kreisberg, Final Report: Contract No. 05-305, California Air Resources Board and the California Environmental Protection Agency (2010), 143 pp. CaARB Link
42. Measurements of Surface Ozone in Mongol Eils (47°36’N; 95°91’ E; P.R. Mongolia), T. Behrendt, J. Grunert, M.O. Andreae and F.X. Meinzer (2010) poster, EGU General Assembly 2010, held 2-7 May 2010, Vienna, Austria, EGU2010-12180. PDF at 2B Tech Archive

2009

17. Chapter 25, Managing Air Pollution Impacted Forests of California, Michael J. Arbaugh, Developments in Environmental Science (2009) 8, 567-582. [ScienceDirect PDF at fs.fed.us]

24. Bubbling to Turbulent Regime Transition in a 2D Catalytic Fluidized Bed Reactor, Jean Saayman, Master’s Thesis, University of Pretoria, South Africa. PDF at 2B Tech Archive

25. Chemistry and Microbiology of Green Building Materials, Chi Phuong Hoang, Ph.D. Thesis (2009) University of Texas, Austin. PDF at utexas.edu

29. Interactive Comment on “In-Situ Ambient Quantification of Monoterpenes, Sesquiterpenes and Related Oxygenated Compounds During BEARPEX 2007 - Implications for Gas- and Particle-Phase Chemistry” by Bouvier-Brown, N.C. Bouvier-Brown, Atmospheric Chemistry and Physics. Discussions (2009) 9, C2602-C2609. PDF

31. The Surface Activity and Rheological Changes Induced in Lung Surfactant Resulting from Ozone Exposure, J.W. Conway, Masters Thesis, Concordia University (2009), 120 pp. Concordia Link

2008

15. Indoor Air Quality Implications of Using Ion Generators in Residences, Michael S. Waring and Jeffrey A. Siegel, Indoor Air (2008) Copenhagen, Denmark - Paper ID: 598. 2B Tech Archive

2007

15. Ozone Interactions with HVAC Filters, Ping Zhao, Ph.D. Thesis (2006) University of Texas, Austin. PDF at utexas.edu
2005

10. Atmospheric and Ice Core Chemistry of Hydroperoxides in West Antarctica: Links to Stratospheric Ozone and Climate Variability, Markus Michael Frey, Ph.D. Thesis (2005), University of Arizona. [openrepository.com](http://www.twobtech.com/citations/2005/10)

2004

2003

10. Ozone Monitoring and Canopy Effect in the Great Smoky Mountains National Park, Ryan Maloney, Master’s Thesis (2003) University of Tennessee. tennessee.edu PDF at tennessee.edu

12. Tropospheric Ozone in the Lower Fraser Valley, British Columbia and the Threat of Injury to Forest Plants, J. Krzyanowski, Master’s Thesis (2003), University of British Columbia, Vancouver, Canada, 169 pp. UBC Library

2002

2001